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CHAPTER 1

INTRODUCTION TO TURBO

SECTION 1.1

EQUATIONS AND EQUATION PARAMETERS

The TURBO code is designed to solve the equations for an incompressible fluid in a three dimensional
geometry with periodic boundary conditions in the three directions. More precisely, the balance
equations that can be solved are the following :

∂tui = −∂j(uiuj)− ∂ip+ ν∇2ui + fi + fLorentz
i (1.1)

∂tbi = −∂j(biuj − uibj) + η∇2bi (1.2)

∂tcα = −∂j(cαuj) + κα∇2cα + σα({cβ}) (1.3)

where ui is the velocity field, bi is the magnetic field, cα are passive scalar(s), each of which is
characterized by a diffusion coefficient κα. Summation is assumed over repeated Latin style indices,
but not over Greek style indices which correspond to passive scalar species. The kinematic viscosity
is ν and the magnetic diffusivity is η. There is the possibility to include source or sink terms or even
chemistry terms in the scalar equations through the function σα. Since periodic boundary conditions
are assumed, the solutions to the balance equations are entirely determined by the initial conditions
that are defined in the subroutine init variables described in section 2.5.1. A fairly large variety
of problems can be treated depending on the values given to some input parameters. These parameters
are referred to as the equation parameters (NSCAL, EQTYPE, CHIM and FORCEPARA) and are defined
in the namelist equation parameters (see 2.2.1).
NSCAL: the number of passive scalars (α=1..NSCAL). It has to be a positive integer, otherwise the
code stops with an error message.

nscal = 0 No passive scalar equation is solved.
nscal ≥ 1 nscal passive scalar equations have to be solved and nscal diffusion coef-

ficients have to be provided as input parameters.

EQTYPE: the nature of the problem to be solved. It is assumed to be a positive integer, otherwise the
code stops with an error message.

eqtype = 0 The velocity (1.1) and the magnetic field (1.2) equations are not solved.
In that case, only the scalar equations (1.3), without the advection term
−∂j(cαuj) will be considered (purely diffusive or diffusion-reaction prob-
lems).
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CHAPTER 1. INTRODUCTION TO TURBO 4

eqtype = 1 The Navier-Stokes equation (1.1) will be solved without the Lorentz force
fLorentz
i and the magnetic field equation is not solved.

eqtype = 2 The Navier-Stokes equation (1.1) will be solved with the Lorentz force
fLorentz
i derived from the quasi-static approximation. The magnetic field

equation is not solved.
eqtype = 3 The velocity (1.1) and the magnetic field (1.2) equations are both solved.

The Lorentz force is given by fLorentz
i = ∂jbibj .

If NSCAL> 0 and EQTYPE> 0, the scalar equations (1.3) with the advection term will also be solved.
CHIM: This parameter decides whether the chemical reaction terms have to be included. It is a
boolean. If its value is “TRUE”, the terms σα are computed through the subroutine chemistry, and
if its value is “FALSE”, the terms σα are ignored. The parameter CHIM is simply ignored if NSCAL=0.
FORCEPARA : This parameter determines the nature of the forcing term fi. It is assumed to be a
positive integer, otherwise the code stops with an error message. The parameter FORCE is ignored if
EQTYPE=0.

forcepara = 0 No forcing term is included. This is the typical choice for studying prob-
lems in which we are interested in the free evolution of a given initial con-
dition.

forcepara = 1 The forcing corresponds to fixed energy and helicity injection rates in a
shell of wave vectors.

forcepara = 2 The forcing imposes fixed energy and helicity levels in a shell of wave
vectors.

forcepara = 3 The forcing corresponds to a constant (in time) force that is defined through
the subroutine external forcing.

forcepara = 4 The forcing corresponds to a constant (in time) force that corresponds to
the Kologorov flow.

forcepara = 5 The forcing imposes a constant (in time) velocity profile defined through
the subroutine external velocity.
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SECTION 1.2

GENERAL PROPERTIES OF DISCRETE FOURIER TRANSFORMS

1.2.1 THE GRID

The code TURBO computes the evolution of a number of fields that are driven by nonlinear partial
differential equations. The number of fields depends on the problem defined by the parameter eqtype.
In this section, such a typical field will be denoted a(~r). Because nonlinear terms are easy to compute
when the field is known as a function of the position, while derivatives are easy to compute using
the Fourier modes of the field, TURBO will use both the real space representation of this field a(~r)
as well as its Fourier space representation ã(~k). TURBO assumes that the field a(~r) is periodic in the
three directions with periodicity length given by lx, ly and lz. The field is entirely defined by their
behavior in a three dimensional periodic box lx× ly× lz known as the computational domain. This
computational domain is meshed using a grid of regularly spaced points with grid spacings that are
entirely determined by the box sizes and the number of grid points in each direction which are given
by nx, ny and nz:

∆x =
lx

nx
∆y =

ly

ny
∆z =

lz

nz
(1.4)

The domain size can also be used to define the smallest non trivial wave number in each direction:

k0
x =

2 π
lx

k0
y =

2 π
ly

k0
z =

2 π
lz

(1.5)

The code has these periodic boundary conditions, the grid structure and the wavevectors fully built
in. The only parameters that the user can modify to change the grid are the box sizes lx, ly, lz and
the number of grid points nx, ny and nz.

1.2.2 DISCRETE REAL SPACE REPRESENTATION

The discretized version of the field a(~r) is an array of real numbers that is denoted ad(~i) = ad(ix, iy, iz).
General properties of the discrete representation of field using Fourier transforms are presented in this
section and the actual storage of the arrays in TURBO is discussed in the following section. The vector
of integers~i corresponds to a position ~r = (x, y, z) on the grid according to:

(x, y, z) = (ix ∆x, iy ∆y, iz ∆z) (1.6)

Taking into account the periodicity of the field, positions corresponding to ix and ix + nx are equiva-
lent and the integers in~i are assumed to be bounded as follows:

0 ≤ ix ≤ nx− 1
0 ≤ iy ≤ ny− 1 (1.7)

0 ≤ iz ≤ nz− 1

1.2.3 DISCRETE FOURIER SPACE REPRESENTATION

The discretized version of the field ã(~k) is an array of complex numbers that is denoted ãd(~p) =
ãd(px, py, pz). Again, the actual storage of this array in TURBO is discussed in the following section.
The vector of integers ~p corresponds to a wave vector ~k = (kx, ky, kz) defined as:

(kx, ky, kz) = (px k0
x, py k

0
y, pz k

0
z) (1.8)
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Taking into account the grid structure, it is impossible to distinguish px and px + nx. Indeed, a plane
wave with a wave vector kx takes exactly the same values on the grid as a plane wave with a wave
vector kx + nxk0

x , because, for each location x on the grid, one has

exp (i kx x) = exp
(
i px ix k

0
x ∆x

)
= exp

(
i (px + nx) ix k0

x ∆x

)
(1.9)

where the equalities k0
x ∆x = 2 π/nx and exp(±i 2π ix) ≡ 1 have been taken into account. The

integers in ~p are thus assumed to be bounded as follows:

−nx
2

+ 1 ≤ px ≤
nx

2
− 1

−ny
2

+ 1 ≤ py ≤
ny

2
− 1 (1.10)

−nz
2

+ 1 ≤ pz ≤
nz

2
− 1

Actually, considering px any ranges of length nx would be acceptable but it is natural to keep only the
smallest wave vectors. The same remark obviously holds for py and pz . Finally, we note that since
the field a is real, its Fourier representation has to satisfy the following constraint:

ãd(~p)∗ = ãd(−~p) . (1.11)

!!Warning!! : These formulas implies that the number nx, ny and nz must all be even.

1.2.4 DISCRETE FOURIER TRANSFORMS

The numbers ad(~i ) and ãd(~p) are related through the expression for the discrete forward and inverse
Fourier transforms:

ãd(~p) = Ck
∑
~i

ad(~i) exp[−si ~p ·~i] , (1.12)

ad(~i ) = Cr
∑
~p

ãd(~p) exp[+si ~p ·~i] , (1.13)

where Cr and Ck are normalization parameter and s = ±1 depending on the definitions adopted
for the direct and inverse Fourier transform (the traditional definitions amounts to choosing s = +1).
The quantity ~p ·~i must be here understood as:

~p ·~i ≡ ix px ∆x k
0
x + iy py ∆y k

0
y + iz pz ∆xz k

0
z

= 2 π (
ix px
nx

+
iy py
ny

+
izz pz
nz

) (1.14)

and the triple sums as:

∑
~i

≡
nx−1∑
ix=0

ny−1∑
iy=0

nz−1∑
iz=0

, (1.15)

∑
~p

≡
nx/2∑

px=−nx/2+1

ny/2∑
py=−ny/2+1

nz/2∑
pz=−nz/2+1

, (1.16)
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An important property of the inverse and direct Fourier transform is that, when applied successively
on a field a(~x), they should leave it unchanged. This can be easily proven using the definitions (1.13)
and (1.12):

ad(~i) = Cr
∑
~p

ãd(~p) exp
(
si ~p ·~i

)
= Cr

∑
~p

Ck
∑
~i

ad(~i′) exp
(
−si ~p ·~i′

)
exp

(
si ~p ·~i

)
= Cr Ck

∑
~i′

ad(~i′)
∑
~p

exp
(
si ~p · (~i−~i′)

)
(1.17)

Now, we will use the following properties:∑
~i

exp
(
si ~p ·~i

)
= Nδ~p,0 , (1.18)

∑
~p

exp
(
si ~p ·~i

)
= Nδ~i,0 , (1.19)

where δ~p,0 = 1 if ~p = (0, 0, 0) and 0 otherwise and N = nx ny nz. In particular, using the for-
mula (1.18) in (1.17) yields:

ad(~i) = N Cr Ck a
d(~i)

which, of course, implies the important following constraint on the normalization factors:

N Cr Ck = 1 . (1.20)
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SECTION 1.3

FIELD REPRESENTATIONS IN TURBO

1.3.1 REAL SPACE REPRESENTATION IN TURBO

The code is fully parallelized and can run on any number numprocs of processors. In practice, how-
ever, it is advised to use a number of processors that is simultaneously a power of 2 and a divisor of
nz. Indeed, the computational grid is split into subdomains that correspond to slices in the z direction
with nx × ny × local nz grid points. When numprocs is a divisor of nz, the slices have all the same
sizes and local nz=nz/numprocs is the same on all the processors.

The discretized version of the field ad(~i) is thus split into numprocs pieces and, on each processor,
it is stored in a tri-dimensional real array which dimensions are defined by the following declaration
statement:

REAL, DIMENSION(0:rx,0:ry,0:rz) :: ar

The value of the parameters rx, ry and rz depend on the algorithm used for computing the discrete
Fourier transforms. In the present distribution of TURBO the librayry FFTW is used and need to have
rx=nx+1, ry=ny-1 and rz=local nz-1. The real number stored in ar(ix,iy,iz) is thus related to a
position that depends on the integers ix, iy and iz as well as on the processor number myid:

x = ix ∗ lx/nx,
y = iy ∗ ly/ny,
z = (local z start + iz) ∗ lz/nz, (1.21)

The values of local nz and local z start depend on the processor and are initialized in the subrou-
tine init fft3d() in the file tt fft.f90 and are output when the subroutine init fft3d() is
called.

The array whereis z(0:nz-1,2) is defined to determine both the node and the value of iz that
must be used to retrieve the grid point corresponding to z = zz ∆z . The procedure is very simple
and consists in going to the node whereis z(zz,1) and get the value (ix,iy,whereis z(zz,2)).
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1.3.2 FOURIER SPACE REPRESENTATION IN TURBO

The discretized version of the Fourier modes ãd(~p) is also split into numprocs pieces. For efficiency
reasons, the discrete Fourier transform algorithm that is used in TURBO (FFTW) produces, on each
processor, an array of complex numbers that is defined by the following declaration statement:

COMPLEX, DIMENSION(0:cx,0:cz,0:cy) :: ac

Here, cx=nx/2, cz=nz-1 and cy=local ny after transpose-1. Two important points have to be
noted. First, the complete set of Fourier mode is now split in slices in the ky direction. Second, the
order of the indices is (x, y, z) in real space while it is (kx, kz, ky) in Fourier space. The complex
number stored in ac(qx,qz,qy) is related to the Fourier mode that corresponds to a wave vector
(kx(qx), kz(qz),ky(qy)). The first component of the wave vector is given by the simple rule:

kx(qx) = qx k0
x for qx = 0 to cx = nx/2 (1.22)

Negative values of the wavevector kx are not needed because the symmetry of the Fourier represen-
tation of real fields (u(−k) = u∗(k)) is used in the code. Hence, only half of the Fourier modes are
stored and the convention in TURBO is to keep only those correspnding to kx > 0. The kz component
is defined according to:

kz(qz) =

{
qz k0

z if 0 ≤ qz ≤ nz/2
(qz− nz) k0

z if nz/2 < qz ≤ cz = nz− 1
(1.23)

It is interesting to notice that both kx(qx) and kz(qz) are defined independently of the processor. On
the contrary, the ky(qy) component of the wave vector depends on both qy and the processor number
myid according to the following rules:

ky(qy) =

{
qqy k0

y if 0 ≤ qqy ≤ ny/2
(qqy− ny) k0

y if ny/2 < qqy ≤ ny− 1
(1.24)

where qqy=qy+local y start after transpose. The values of the two parameters local ny after transpose

and local y start after transpose depend on the processor and are initialized in the subroutine
init fft3d() in the file tt fft.f90. In order to ensure that the load of each processor is the
same, it is advised to chose numprocs as a divisor of ny, in which case local ny after transpose is
independent of the processor and is simply given by ny/numprocs.

The array whereis ky(0:ny-1,2) is defined to determine both the node and the value of qy that
must be used to retrieve the the mode corresponding to ky = yy k0

y . The procedure is very simple
and consists in going to the node whereis ky(yy,1) and get the value (qx,qz,whereis ky(yy,2)).
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SECTION 1.4

THE DERIVATION OPERATOR

It is well known that the derivation operator is very easily implemented in terms of the Fourier coeffi-
cients. Considering the expression (1.13), it is clear that the Fourier coefficient of the gradient of the
field a(~x) is given by is~k ã(~k). There is however a slight difficulty with the discretized version of the
derivative in the Fourier representation. Let us consider for instance a field that would have a single
mode corresponding to the largest kx mode only and let us denote this largest kx by kmax

x = π nx/`x.
Taken into account the fact that a(x) has to be real, this field would read:

a(x) = 2 < (ã(kmax
x )) cos

[
π nx x

`x

]
− 2 = (ã(kmax

x )) sin
[
π nx x

`x

]
First, it can be noted that there is no way to determine the value of = (ã(kmax

x )) since, on the grid, it
is multiplied by a function that is always 0. Indeed, the grid values of x are given by ix `x/nx. The
largest mode should thus be purely real. Moreover, the first order derivative of this purely real mode
will itself be always 0 on the grid for the same reason. There is thus no way to distinguish between
the derivative of a constant signal and the derivative of the mode kmax

x . For this reason, the turbo code
puts to 0 all the modes that correspond to px = nx/2 or py = ny/2 or pz = nz/2. This is done at the
end the subroutine rk endstep (2.8.9).
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SECTION 1.5

PARSEVAL’S THEOREM

1.5.1 PARSEVAL’S THEOREM FOR DISCRETE REPRESENTATION OF THE FIELDS

We consider in this section how to compute the volume integral of a product of two fields using the
discrete representation of the fields. The type of quantity we want to evaluate are given by:

Q =
1
V

∫
d~r a(~r) b(~r) . (1.25)

It is chosen to divide the integral by V because, in many cases, the user will be interested in computing
the volume average of a product. In practice, the quantity Q is easily approximated in real space by:

Q =
1
N

∑
~i

ad(~i) bd(~i) , (1.26)

where the volume d~r has been approximated by V/N . However, in a spectral code, the fields are often
expressed in the Fourier representation and transforming them into the real space representation is
time consuming. It is thus interesting to express the quantityQ in terms of the Fourier representations:

Q =
C2
r

N

∑
~i

∑
~p

∑
~p

ãd(~p) b̃d(~p) exp
[
s i (~p+ ~p′) ·~i

]
=
C2
r

N

∑
~p

∑
~p′

ãd(~p) b̃d(~p′) N δ~p,−~p′

= C2
r

∑
~p

ãd(~p) b̃d(~p)∗ . (1.27)

where, we have used the property (1.19). Thi formula is the expression of the Parseval’s theorem
for the discrete representions of the fields. In most spectral code, only half of the Fourier modes are
stored using the property (1.11). If, for instance, only the modes with kx(qx) ≥ 0 are stored, the
quantity Q can be evaluated as

Q = C2
r

nx/2∑
px=0

ny/2∑
py=−ny/2+1

nz/2∑
pz=−nz/2+1

ãd(~p) b̃d(~p))∗ (1.28)

+ C2
r

nx/2−1∑
px=1

ny/2∑
py=−ny/2+1

nz/2∑
pz=−nz/2+1

ãd(~p)∗ b̃d(~p) .

which can be rewritten as follows

Q = C2
r

nx/2∑
px=0

M(px)
ny/2∑

py=−ny/2+1

nz/2∑
pz=−nz/2+1

<
(
ãd(~p) b̃d(~p))∗

)
(1.29)

where the real array M(px) is defined as follows:

M(px) =


1 if px = 0
2 if 1 ≤ px ≤ nx/2− 1
0 if px = nx/2

(1.30)

The structure of M(px) takes into account the fact that modes with px = nx/2 are set to 0 as a
consequence of the definition of the derivation operator.
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1.5.2 PARSEVAL’S THEOREM IN TURBO

Two important properties of TURBO have to be taken into account in order to compute the expres-
sions (1.26) and (1.29) with the code. First, only part of the discrete field are stored on each node.
Second, only half of the modes in Fourier space (corresponding to kx ≤ 0) are stored by TURBO. We
first consider the expression (1.26) which implies that two discrete real fields have been defined

REAL, DIMENSION(0:rx,0:rz,0:ry) :: ar, br

Computing the partial sum on each node – it will be denoted Qr node – is straightforward:

Qr node=0

DO iz=0,rz

DO iy=0,ry

DO ix=0,rx

Qr node=Qr node+ar(ix,iy,iz)*br(ix,iy,iz)

END DO

END DO

END DO

Qr node=Qr node/N

The order of the loops is chosen to optimize the computation in Fortran. The quantity stored in
Qr node corresponds to a partial sum over all the grid points associated to the node myid. The global
sum is then easily computed using standard MPI instruction:

CALL mpi allreduce(Qr node,Q,1,MPI MYREAL,MPI SUM,MPI COMM WORLD,ierr)

Computing the expression (1.29) implies that two discrete complex fields have been defined

COMPLEX, DIMENSION(0:cx,0:cz,0:cy) :: ac, bc

Computing the partial sum on each node – it will be denoted Qc node – is also straightforward:
Qc node=0

DO qy=0,cy

DO qz=0,cy

DO qx=0,cx

Qc node=Qc node+REAL(ac(qx,qz,qy)*CONJG(bc(qx,qz,qy)))*MM(qx)

END DO

END DO

END DO

Qc node=Qc node*Crˆ2

The order of the loops is again chosen to optimize the computation in Fortran. The quantity stored in
Qc node corresponds to a partial sum over all the Fourier modes associated to the node myid. The
global sum is then easily computed using standard MPI instruction:

CALL mpi allreduce(Qc node,Q,1,MPI MYCOMPLEX,MPI SUM,MPI COMM WORLD,ierr)

The array MM(0:cx) is initialized in the subroutine initk according to the rules (1.30).
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SECTION 1.6

KINETIC FORCING

1.6.1 SHELL FORCING WITH CONSTANT ENERGY AND HELICITY INJECTION RATES

If the forcing parameter FORCEPARA=1, a forcing term is added to the right-hand-side of the Navier-
Stokes equation, which can be written in Fourier space as follows :

~f(~k) = α(~k) ~u(~k) + β(~k) ~ω(~k) , (1.31)

where the parameter α(~k) and β(~k) are real. The vectors ~u(~k) and ~ω(~k) represent the Fourier modes
of the velocity and the vorticity respectively. An interesting property of this forcing is that it is local
in Fourier space. It is thus quite easy to determine its effect in terms of energy or helicity. For each
wave vector ~k, the energy e(~k), the helicity h(~k) and the enstrophy Ω(~k) are defined by:

e(~k) =
1
2
~u(~k) · ~u(~k)∗ (1.32)

h(~k) = <
(
~u(~k) · ~ω(~k)∗

)
(1.33)

Ω(~k) =
1
2
~ω(~k) · ~ω(~k)∗ = k2 e(~k) (1.34)

The last formula Ω(~k) = k2 e(~k) is only valid for incompressible flows. Indeed, the velocity Fourier
mode can be rewritten as follows ~u(~k) = ~ur(~k) + i ~ui(~k) where ~ur(~k) and ~ui(~k) are real vectors that
represent respectively the real and the imaginary part of ~u(~k). The vorticity then reads

~ω(~k) = i~k × ~u(~k) = i ~k × ~ur(~k)− ~k × ~ui(~k) . (1.35)

Both vectors ~ur(~k) and ~ui(~k), as a consequence of incompressibility, are orthogonal to ~k. The norm
of ~ω(~k) is then given by :

Ω(~k) =
1
2
~ω(~k) · ~ω(~k)∗ =

1
2
|~k × ~ui(~k)|2 +

1
2
|~k × ~ur(~k)|2 (1.36)

=
1
2
k2 |~ui(~k)|2 +

1
2
k2 |~ur(~k)|2 = k2 e(~k) (1.37)

where e(~k) is given by (|~ur(~k)|2 + |~ui(~k)|2)/2. Without the incompressibility condition, it would no
be possible to simplify |~k × ~ur(~k)|2 into k2 |~ur(~k)|2 since the sin of the angle between ~k and ~ur(~k)
would have to be taken into account. The helicity can also be computed in terms of ~ur and ~ui:

h(~k) = <
((
~ur(~k) + i ~ui(~k)

)
·
(
i ~k × ~ur(~k)− ~k × ~ui(~k)

)∗)
(1.38)

= ~ur(~k) ·
(
~k × ~ui(~k)

)
+ ~ui(~k) ·

(
~k × ~ur(~k)

)
. (1.39)

Remembering that ~a · (~b×~c) ≤ |~a| |~b||~c| and 2 |~a| |~b| ≤ |~a|2 + |~b|2, the important following inequality
is easily established:

h(~k) ≤ 2 k e(~k) . (1.40)

The energy injection rate due to the forcing term is given by:

ε
~k
e =

de(~k)
dt

∣∣∣∣∣
f

= <
(
~u(~k) · ~f(~k)∗

)
= 2 αk e(~k) + βk h(~k) (1.41)
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The helicity injection rate due to the forcing term is given by:

ε
~k
h =

dh(~k)
dt

∣∣∣∣∣
f

= <
(
~f(~k) · ~ω(~k)∗ + ~u(~k) · [−i~k × ~f(~k)]∗

)
= 2<

(
~f(~k) · ~ω(~k)∗

)
= 2 αk h(~k) + 4 βk k2 e(~k) (1.42)

If the total energy injection rate εe and the total helicity injection rate εh are the control parameters,
the forcing parameters α and β are defined as:

α(~k) =
1

2 Nf

4 k2 e(~k) εe − h(~k) εh
4 k2 e(~k)2 − h(~k)2

(1.43)

β(~k) =
1
Nf

e(~k) εh − h(~k) εe
4 k2 e(~k)2 − h(~k)2

(1.44)

where Nf is the number of forced modes. This choice ensures that each of the Nf forced modes is
submitted to a forcing mechanism that injects energy at the rate ε~ke = εe/Nf and helicity at the rate
ε
~k
h = εh/Nf . Now, we define h(~k) = 2 k e(~k) s(~k) and εh = 2 k εe φ. The coefficient s(~k) has

to be in the range [−1,+1]. The limits (s(~k) = ±1) can only be reached when the velocity and the
vorticity Fourier modes are perfectly aligned ~ω(~k) = ±k~u(~k). With these changes of variables, the
expression for the forcing parameters reduce to:

α(~k) =
εe

2 Nf e(~k)

1− s(~k) φ

1− s(~k)2
(1.45)

β(~k) =
εe

2 Nf k e(~k)

φ− s(~k)

1− s(~k)2
(1.46)

There is no obvious constraint on εe and φ. It is possible to imagine a forcing that would inject
helicity and no energy during a certain period. However, such a forcing would lead asymptotically
to a singularity. For instance, if the nonlinear interactions are neglected, the energy and helicity
equations read:

∂te(k) = εe − 2 ν k2 e(k) (1.47)

∂th(k) = εh − 2 ν k2 h(k) (1.48)

The asymptotic solutions for these equations are given by e∞(k) = εe/(2 ν k2 and h∞(k) =
εh/(2 ν k2. Since h(~k) ≤ 2 k e(k), it seems reasonable to impose this constraint to the asymp-
totic solution of the linear problem and consequently we will assume εh ≤ 2 k εe, which implies
φ ≤ 1. Interestingly, in the limit of “maximal” helicity injection rate φ = 1, the forcing coefficients
simplify into:

α(~k) =
εe

2 Nf e(~k)

1

1 + s(~k)
(1.49)

β(~k) =
εe

2 Nf k e(~k)

1

1 + s(~k)
(1.50)

Since s(~k) should be close to 1 in that case, no divergence in the forcing parameter is expected. The
case φ = −1 would not cause any difficulty either.
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1.6.2 SHELL FORCING WITH CONSTANT ENERGY AND HELICITY LEVELS

Another possibility is to impose the value of both the velocity and the helicity in a shell of wave
vectors, which corresponds to the case FORCEPARA=2. This is easily achieved by transforming, after
each time iteration, the velocity according to:

~u(~k)→ α(~k) ~u(~k) + β(~k) ~ω(~k) (1.51)

As a consequence, the vorticity is transformed as:

~ω(~k)→ α(~k) ~ω(~k) + β(~k) k2 ~u(~k) (1.52)

Let us denote e∗ and h∗ = 2 k φ e∗ the levels for the energy and the helicity that have to be imposed.
The parameters α(~k) and β(~k) have thus to be chosen so that:

e∗ =
1
2

(
α(~k) ~u(~k) + β(~k) ~ω(~k)

)2

= (α(~k)2 + β(~k)2 k2) e(~k) + β(~k) α(~k) h(~k) (1.53)

h∗ =
(
α(~k) ~u(~k) + β(~k) ~ω(~k)

)
·
(
α(~k) ~ω(~k) + β(~k) k2 ~u(~k)

)
= 4 α(~k) β(~k) k2 e(~k) +

(
α(~k)2 + β(~k)2 k2

)
h(~k) . (1.54)

The solutions to this system require some simple algebraic manipulations that lead to:

α(~k)2 =
e∗
(

[1− φ s(~k)] +
√

[1− φ2] [1− s(~k)2]
)

2 e(~k) [1− s(~k)2]
(1.55)

β(~k) =
e∗ [φ− s(~k)]

2 k e(~k) [1− s(~k)2] α(~k)
(1.56)

An interesting limit is reached when maximal helicity is imposed in the forcing shell (φ = 1):

α(~k)φ=1 =
β(~k)φ=1

k
=

√
e∗

2 e(~k) [1 + s(~k)]
(1.57)

The energy injection rate imposed by this forcing is simply (independently of the value of s(k) and
φ:

εe =
e∗ − e(~k)

dt
(1.58)

and the helicity injection rate is

εe = 2 k
φ e∗ − s(~k) e(~k)

dt
=
φ h∗ − h(~k)

dt
(1.59)
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SECTION 1.7

TIME EVOLUTION OF VARIABLES

The purpose of the time evolution algorithm is to estimate the value of y(t0 + h) considering that
y(t0) is known. The parameter h is referred to as the time increment or time step. The subroutines
described in section 2.8 are designed to achieve this objective and have two main purpose. The first
one is to compute y(t0 + h) using a Runge-Kutta algorithm. This algorithm require the evaluation
of the time derivatives of all the variables. Since these time derivatives contain nonlinear term which
cannot be fully capture on the same grid as the linear term (aliasing), the second purpose of these
subroutines is to eliminate as much as possible this aliasing error.

1.7.1 RUNGE-KUTTA SCHEMES

Time evolution in TURBO is based on a modified Williamson, third-order low storage Runge-Kutta
method. This approach is explained here by considering that the balance equations solved by TURBO

can be rewritten schematically as follows:

ẏ = −ν y +N(y). (1.60)

The linear term represents the dissipative transport and N contains all the remaining terms, in-
cluding the nonlinearities and the possible mechanical forces (except de Coriolis force −2 ~Ω × ~u
in systems subject to a solid body rotation; this force is treated separately as a linear terms in a
slightly more complex scheme than the dissipative terms). By considering the change of variables
y(t) = exp(−ν(t− t0)) z(t), the equation 1.60 can be rewritten:

ż = eν(t−t0)N(ze−ν(t−t0)) ≡ F (z, t). (1.61)

Solving the equation for z is analytically equivalent to solving the equation for y. However, the nu-
merical algorithms presented below and designed for the equation 1.61 have the advantage to produce
the exact solution for the linear equation (N=0). This would not be true if they would be implemented
directly to the equation 1.60. The algorithms we are considering are implemented using a multi-step
method:

i = 1, 2, . . . , n :

{
gi = gi−1 + γi F (zi−1, t0 + χi−1 h)
zi = zi−1 + αi h F (zi−1, t0 + χi−1 h) + βi gi h

(1.62)

with z0 = z(t0) = y(t0), g0 = 0 and χ0 = 0. In the final step, zn is supposed to be an accurate
estimate for z(t0 + h). Of course, these algorithms can also be written in terms of the explicit form
of F (z, t) :

gi = gi−1 + γi e
νχi−1h N(zi−1 e

−νχi−1h) (1.63)

zi = zi−1 + αi h e
νχi−1h N(zi−1 e

−νχi−1h) + βi gi h (1.64)

A very convenient change of variables can be used to simplify these formula: yi = zi e
−νχih and

ki = gi e
−νχih. This leads to:

ki = e−νξih (ki−1 + γi N(yi−1)) (1.65)

yi = e−νξih (yi−1 + αi h N(yi−1)) + βi ki h (1.66)

where ξi = χi−χi−1. In these schemes, k0 and χ0 are both assumed to vanish and χn = 1. The other
parameters have to be chosen so that the difference between the actual solution y(t+ h) and yn is of
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order hp+1. The scheme is then of order p. TURBO proposes two third-order accurate Runge-Kutta
schemes.

The first one is based on three sub-steps and used the so-called “two-third” dealiasing method.
The choice for the other parameter is not unique. We propose to consider only schemes for which
the three sub-steps are evaluated at t0, t0 + h/3 and t0 + 2/3. There is no particular justification for
this choice except that it simplifies the procedure since all the ξi are equals to 1/3. This choice is still
compatible with a three-parameter family of coefficients that are defined by the following equalities.

α1 = −β1 γ1 + 1/3
α2 = −2/9

β2 = −1/(3 γ1)
β3 = +1/(4 γ1)

γ2 = −8 γ1/3
γ3 = −(4 α3 − 3) γ1

(1.67)

TURBO is implemented with the following particular choice and these parameters are defined in the
subroutine rk3 twothird 2.8.2:

α1 = +1/2
α2 = −2/9
α3 = +1

β1 = +1/3
β2 = +2/3
β3 = −1/2

γ1 = −1/2
γ2 = +4/3
γ3 = +1/2

(1.68)

The second Runge-Kutta method is a four substep algorithm. The idea behind this approach is that
all the computation of the nonlinear term have to appear in the final form of yn with the same weight
(which is then 1/4, as imposed by the condition that the first order of the expansion of yn matches
the first order of the analytical solution). The purpose of this additional constraint is to have for each
couple of time iteration, heigh successive evaluation of the nonlinear terms that will be computed on
shifted grids for alias removal 1.7.2. The grids have to be shifted by ±∆/2 in each direction and
we thus have height possible combinations in a three dimensional computation. These constraints
imposes that χ1 = χ2 = χ3 = 2/3 but are compatible with a four parameter family of coefficients.
We do not present the general form of this family of coefficients and show only the value actually
implemented in TURBO:

α1 = +1/3
α2 = −3/8
α3 = +1/4
α4 = +1/4

β1 = +1/3
β2 = −3/4
β3 = +1/2
β4 = −1/6

γ1 = 1
γ2 = −3/2
γ3 = 0
γ4 = 0

χ1 = 2/3
χ2 = 2/3
χ3 = 2/3
χ4 = 1

(1.69)

These parameters are defined in the subroutine rk4 shift 2.8.3:
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1.7.2 DEALIASING METHODS

The aliasing error takes its origin in the property 1.9 that a plane wave with a wave vector kx takes
exactly the same values on the grid as a plane wave with a wave vector kx + nx k0

x. When the
nonlinearities are computed, this aliasing error becomes a serious issue. Let us considered a one
dimensional problem with a signal s represented by modes with k = k0 (−n/2 + 1), · · · , k0 n/2.
The square s2 has modes that correspond to k = k0 (−n+2), · · · , k0 n. As a consequence, the mode
of s2 that corresponds to k = k0 (−n+ 2) is undistinguishable from the mode k = 2. Two methods
are considered to eliminate this difficulty.

The first one consists in i) assuming that only the modes of swith k = k0 (−m/2+1), · · · , k0 m/2
are non zero and ii) imposing that these modes remain zero during the simulation. Let us consider
a mode of s that corresponds to k = q k0 with 0 ≤ q < m/2. If 2q > n/2, this mode corresponds
to a mode 2k in s2 that will create aliasing in the mode 2q − n that is between −n/2 and m − n.
However, ifm−n < −m/2+1 the mode that is contaminated belongs to the range of modes that are
imposed to remain zero and the aliasing error is eliminated. The largest value of m compatible with
this inequality 3m/2 < n+ 1 is m = 2/3n. The two-third method thus consist simply in keeping all
the modes outside the range k = k0 (−3n/4 + 1), · · · , k0 3n/4 to zero.

The second method is based on the following property. If the grid is shifted by a distance d, all
the positions are simply shifted x→ x+ d and the modes are then multiplied by exp(i d q k0). The
aliasing error can be removed by i) shifting the grid by d, ii) compute the nonlinearity on this grid,
iii) shift the grid by −d. Let us consider a mode k = q k0 with 2q > n/2. The contribution from
aliasing is multiplied by exp(i d q k0) in step i). Hence, the contribution of this term to the quadratic
nonlinearity (computed in step ii), is multiplied by exp(2 i d q k0). Finally, when shifted back to the
original grid, this term multiplied by exp(−i d (2q−n) k0) in step iii) since this nonlinear product is
stored on the mode (2q − n). The total factor that multiplies the aliasing error is thus exp(i d n k0).
It is important to notice that the contributions that does not lead to aliasing errors are unaffected by
this procedure.

If d is π/(nk0) ≡ ∆, the aliasing error is multiplied by exp(iπ) = −1. The idea is thus to
perform two separate computations of the nonlinear term. These computations use respectively shifts
d = +∆/2 and d = −∆/2 so that the aliasing error is opposite to each other in the two computations.
Summing the two computations thus leads to an alias free nonlinear term. In three dimensional
systems, height evaluations with different shifts are needed to get an alias-free computation of the
nonlinear terms. This is of course quite prohibitive. The policy adopted in TURBO is to compute
these height nonlinear as substep of a Runge-Kutta scheme. More precisely, two time steps of a
four-substep Runge Kutta scheme are used in which the updated variable is, at lowest order, given by:

yn+1 = y + (F1 + F2 + F3 + F4)/4 ∗ dt+ · · · (1.70)

where the Fi’s are the nonlinear terms computed at each substep on a different grid. If the same dt is
used for two time steps, this scheme allows to perform the height evaluations with two time iterations.
Of course, the Fi’s are not evaluated exactly at the same time, so the aliasing error is only removed
up to order dt. However, a random shift is added to the procedure so that the remaining aliasing error
is multiplied by a random number, which should reduce further its impact on the accuracy.
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SECTION 1.8

SOLID BODY ROTATION

Rotation effects due to a global solid body rotation of the reference frame have been implemented in
TURBO. The solid body rotation is fully characterized by the vector ~Ω. Its direction defines the axis
of rotation and its intensity gives the angular speed. Two accelerations appear in the Navier-Stokes
equation due to the rotation:

∂t~u+ ~u · ∇~u⇒ ∂t~u+ ~u · ∇~u+ 2 ~Ω× ~u+ ~Ω× (~Ω× ~r) (1.71)

Hence, a new term, referred to the Coriolis force −2 ~Ω× ~u, has to be added in the right hand side of
the Navier-Stokes equations. The last term is known as the centripetal acceleration. It seems to break
the translation invariance of the Navier-Stokes equations since it depends on the position ~r. However,
in incompressible fluids, the centripetal acceleration term can be combined with the pressure by virtue
of the equality ~Ω × (~Ω × ~r) = −∇(~ω × ~r)2/2. Hence, the only visible effect of the rotation is the
Coriolis force. Although there is no restriction in the implementation of rotation in TURBO regarding
the direction of ~Ω, we will assume here that ~Ω is along the z axis in order to simplify the present
discussion. In terms of components, this additional force can be expressed as −2 Ω εi3l vl. This
expression is not divergence free. However, in Fourier space, it is fairly simple to keep only the
divergence free part of it by using the projector Pij = δij − kikj/k2. The Navier-Stokes equations
can then be written in Fourier space as follows

∂tui = −νk2ui − 2 Ω Pijεj3lul + ni(um) (1.72)

Here, ni is the divergence free non-linear terms. This equation can be re-written as follows

∂tui = Lijuj + ni(um) (1.73)

where Lij = −νk2δij − 2 Ω Bij and Bij = Pilεl3j . The solution of the linear equation is given by:

ui(t0 + τ) = Cij(τ) uj(t0) (1.74)

where
Cij(τ) = eτ Lij = eτ(−νk2δij − 2Ω Bij) = e−τνk

2
Dij (1.75)

and Dij = e−2τΩ Bij . Here, we have used the fact that the exponential of a sum of two matrices
M1 +M2 is the product of the exponentials eM1 eM2 when M1 and M2 commute. This is obviously
the case forBij and δij since δij commutes with any matrix. Introducing ω = 2 Ω k3/k, the following
explicit form for the matrix Dij can be derived: Dij = D̃ij + aikj where

D̃ij(ωτ) = cosωτ δij − sinωτ
kl
k
εijl =

1
k

 k cosωτ −k3 sinωτ k2 sinωτ
k3 sinωτ k cosωτ −k1 sinωτ
−k2 sinωτ k1 sinωτ k cosωτ

 (1.76)

ai =
1
k k3

 −k2 sinωτ
k1 sinωτ

k (1− cosωτ)

 (1.77)

Since the velocity is divergence free, the term aikj can be neglected in 1.74. The following change
of variables can then be introduced:

ui = e−τνk
2
D̃ij(ωτ) zj (1.78)



CHAPTER 1. INTRODUCTION TO TURBO 20

The new vector zj is also assumed to be divergence free (kizi = 0). It is quite simple to show that the
complete inverse of the matrix D̃ij(ωτ) can be expressed as follows:

D̃−1
ij (ωτ) = D̃ij(−ωτ) +

sin2 ωτ

cosωτ
kikj
k2

(1.79)

Hence, when considering only their action on divergence free vectors, the matrices D̃ij(ωτ) and
D̃ij(−ωτ) can be considered as the inverse of each other since the last term in 1.79 vanishes. The
evolution equation for ui can now be transformed into:

∂τui = (−νk2δij − 2 Ω Bij)uj + ni(um) (1.80)

= e−τνk
2
D̃ij(ωτ)∂τzj − νk2ui + e−τνk

2 (
∂τ D̃ij(ωτ)

)
zj (1.81)

which reduces to:
∂τzi = e+τνk

2
D̃−1
ij (ωτ) nj(um)

where we have used the following relation that can be easily verified:

2 Ω BilD̃lj(ωτ) = −∂τ D̃ij(ωτ) + bikj

where ~b = −ω sinωτ ~k/k2 + 2 cosωτ ~Ω × ~k/k2. Assuming that the nonlinear term is divergence
free, or that its divergence has been taken out, the evolution equation for the variables zi can now be
written as follows:

∂τzi = e+τνk
2
D̃ij(−ωτ) nj(um) (1.82)

and the changes of variables are given by:

zi = e+τνk
2
D̃ij(−ωτ) uj (1.83)

ui = e−τνk
2
D̃ij(+ωτ) zj (1.84)

It can be noted, that the expression (1.76) does not depends on the assumption that the rotation vector
is aligned along the z axis. Hence, it the expression for D̃(ωτ) is valid in general if the frequency ω
is re-defined as follows: ω = 2 ~Ω · ~k / k.

In practice, in the presence of a solid body rotation, the velocity and its associated work array
must be multiplied by the matrix D̃(ωτ) at each substep in the Runge-Kutta scheme 1.65-1.66. It
must be noted that the magnetic field and the scalar fields evolution equations are not modified by
the rotation [see for instance : Numerical simulations of rotating sunspots, by G.J.J. Botha, A.M.
Rucklidge, F.H. Busse and N.E. Hurlburt. In 10 Years of SOHO and Beyond (eds. D. Spadaro, B.
Fleck and J.B. Gurman) ESA SP-617: Noordwijk (2006)].



CHAPTER 2

CORE TURBO SOURCE FILES

This chapter proposes a complete description of the programs, subroutines and modules that are part
of the core solver in the TURBOdistribution package. The core solver requires only the files with a
name starting by tt that should not be modified by the user and the files with a name starting by xx

which is the place where user-defined subroutines should be introduced. The present release of the
standard distribution package of TURBO also comtains a number of files with the prefix pp which
correspond to post-processing programs. The documentation for this file will be added in a future
release.

For each file, all the subroutines are described in the same order as they appear in the code.
This documentation is designed to users who have some knowledge of the problems described in the
preceeding chapters and have a basic knowledge of Fortran and a minimal understanding of MPI.

21
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SECTION 2.1

THE PROGRAM IN FILE: TT MAIN.F90

This is the main program of the TURBO solver. The structure of the program can be summarized in
the following scheme:

Figure 2.1: Typical TURBO run. Variables are initialized depending on the type of simulation defined
in the parameter file. In the main loop, the variables are updated, the statistics are computed and the
fields are saved at the desired intervals. Some final actions are then taken before exiting.

The main program has three parts that correspond respectively to i a number of initializations, ii
the main loop and iii several actions that have to be taken before exiting.

The first part starts by initializing the MPI parameters and variables. It then reads the name of the
simulation simuname and the corresponding parameter file simuname.par and time & save parameter
simuname.n file. The initial iteration number is set to niter done+1 and the final iteration number is
set to the minimum between the total number of iterations requested for the simulation niter todo

and the sum niter done+nstep. It is important here to make the difference between the “simulation”
and the “run”. The complete numerical study of a problem will be referred to as the simulation. For
practical reasons (computer queueing system limitations, for instance), it might be needed to split
the simulation into several runs. The number of iterations needed for the simulation is niter todo

while the number of iterations in a run is nstep. In this first part, the main program also initializes the
variables and the statistics through the call to the subroutine init variables. Finally, it outputs the
files (output) but not the statistics and starts computing the statistics: external stats compute.

The main loop is very simple. It computes the time step every two iterations. The time step is
automatically adapted every two time step only as imposed by the grid-shifting dealiasing procedure
implemented in one of the Runge-Kutta schemes. The variables are then updated every time step. The
required statistics are computed every nstat iterations and the files are saved every nsave iterations.
The parameters nstat and nsave are part of the namelist save parameters in the parameter file.

Before exiting, the main program computes the statistics and outputs the variables one last time
if needed. It then tests if the end of the run corresponds to the end of the simulation. If not, it creates
an empty file simuname.go. The existence of this empty file can then be used to automatically
relaunch a run in the queueing system using an appropriate script file. The program then deallocates
the memory and exits.
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SECTION 2.2

THE MODULES IN FILE: TT MOD.F90

This file contains the different modules used by TURBO. The modules are used to define global vari-
ables and parameters used by the code. These global variables and parameters are accessible by any
subroutine which includes at the beginning the statement USE "module name" where module name

refers to the name of the module in which the variable is declared. When a module is used by a sub-
routine, it is not allowed to define locally another variable with the same name as a variable defined
in the module. The modules used in TURBO are:

• parameters: contains the simulation parameters.

• variables: contains the simulation field variables.

• fftwmodule: is needed for the Fast Fourier Transform subroutines.

• mpi var: is needed for the MPI processes.

• statmod: used for external defined subroutines.
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2.2.1 MODULE PARAMETERS

This module contains a large number of variables (quantities that can be changed in the subrou-
tines) and parameters (quantities that are defined and have a fixed value assigned in the module) used
throughout many subroutines in TURBO.

USEFUL CONSTANT PARAMETERS

The module parameters first defines simple parameters such as :

- pi = 3.1415...
- EPS = 10−10 (used as a very small number...)
- twopi = 2π
- I =

√
−1

- namelength = 6 (defines the number of characters used for the simulation name)
- SIZEOF REAL = KIND(1.0) (used to determine if the code has been compiled in single of dou-

ble precision).

USEFUL VARIABLES AND ARRAYS

Next, the module parameters is used to declare variables and arrays that are used in more than
one subroutine. The first three real numbers rsx, rsy and rsz are random shifts that are used for
two successive time steps if random shifts to remove the aliasing error 1.7. The integers plan CtoR

and plan RtoC are needed by the FFTW subroutines. The character string simname designates the
simulation name and is mainly used in the input and output subroutines.

Also, various arrays defined in the subroutine init wavevectors (2.5.3) are declared here : MM, kx,
ky, kz, ikx, iky, ikz, ksquare, knorm, km2 and zeros twothird.

The module parameters also contains a number of namelists. A namelist is a facility for grouping
variables for input and output. All the data that have to be specified by the user in order to define the
type of runs are grouped using namelists in the file simname.par where “simname” is the name of
the simulation. These namelists are defined in the module parameters:

NAMELIST “DIM AND SIZES” AND RELATED QUANTITIES

This namelist contains three integers nx, ny, nz representing the numbers of grid points in each
direction and three real numbers lx, ly, lz corresponding to the sizes of the computational domain.
Other variables closely related to these quantities and initialised in the subroutine init fft3d are
also defined after the definition of the namelist dim and sizes:

- Ns=nx*ny*nz, the total number of grid points
- Cr=1.0/Ns and Ck=1.0 normalisation factors for the FFT
- cx,cy,cz the dimension of complex arrays (may depend on the computational node).
- rx,ry,rz the dimension of real arrays (may depend on the computational node).
- dx,dy,dz the grid sizes (dx=lx/nx, ...), initialised in the subroutine init wavevectors

- kMx,kMy,kMz the largest wave vector in each direction (kMx=πnx/lx, ...), initialised in the sub-
routine init wavevectors. The smallest of these three values is retained to define kM.

- k0x,k0y,k0z the smallest wave vector in each direction (k0x=2π/lx, ...), initialised in the
subroutine init wavevectors. The largest of these three values is retained to define k0.
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NAMELIST EQUATION PARAMETERS AND RELATED QUANTITIES

This namelist contains four integers. The first integer is FORCEPARA. It defines the type of forcing – if
any – that will be used in the subroutine forcing 2.4.1. It can take any of the following values:

- 0 : No forcing term is added in the Navier-Stokes equation.
- 1 : The forcing injects fixed energy and helicity rates in a shell of wave vectors 1.6.1.
- 2 : The forcing imposes fixed energy and helicity levels in a shell of wave vectors 1.6.2.
- 3 : The forcing is defined by the user in an external subroutine external forcing.
- 4 : Kolmogorov forcing.
- 5 : Imposes a number of constraints on the velocity field defined by the user in the external

subroutine external modif vel.

The second integer is CHIM. It defines whether reactive terms are added (CHIM=1) in the passive scalar
equations or not (CHIM=0).

The third integer is NSCAL. It defines the numbers of passive scalar equations. It can take integer
values between 0 and 99.

The fourth integer is EQTYPE. It defines the type of problem that has to be solved by TURBO. It can
take one of the following values:
INTEGER, PARAMETER :: reac diff = 0

INTEGER, PARAMETER :: navier stokes = 1

INTEGER, PARAMETER :: qs mhd = 2

INTEGER, PARAMETER :: full mhd = 3

The parameters reac diff, navier stokes, qs mhd and full mhd are introduced to help in the read-
ing of the code. For instance, if EQTYPE=1, the convention in TURBO assumes that the code is solving
the Navier-Stokes equations (without MHD terms). It is easier however to understand the exact mean-
ing of a test in the code if this test is written IF (EQTYPE.eq.navier stokes) THEN ... rather than
IF (EQTYPE.eq.1) THEN ... Also, three logicals are defined:

- VELEQ : True if the velocity equation has to be solved.
- MAGEQ : True if the magnetic field equation has to be solved.
- SCAEQ : True if scalar field equation(s) has(ve) to be solved.

NAMELIST ROT PARAMETERS AND RELATED QUANTITIES

This namelist contains three real numbers Omega x, Omega y, Omega z that correspond to the three
components of a possible solid body rotation vector. Immediately after the declaration of this namelist,
the module parameters also declares the logical ROTEQ. In the subroutine read para, the value of
these numbers are read and checked. If all three real numbers are zero (in practice, if their absolute
value is lower than EPS), TURBO considers that no rotation effect has to be included and sets the
logical ROTEQ to false otherwise it is set to true.

NAMELIST VEL PARAMETERS AND RELATED VARIABLES

This namelist is read in the subroutine read para only if the logical VELEQ is true. Otherwise, it is
simply ignored. It contains one integer and several real numbers. The integer init vel determines
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the type of initialisation procedure used for the velocity at the beginning of the run. It can take the
following values:
INTEGER, PARAMETER :: restart = 0

INTEGER, PARAMETER :: random = 1

INTEGER, PARAMETER :: taylor green= 2

INTEGER, PARAMETER :: extern = 3

Again, the parameters restart, random, taylor green and extern are introduced to help in the
reading of the code.

The real number nu is the molecular viscosity. Because the mode corresponding to kx = ky = kz = 0
are kept constant by the Navier-Stokes equation in absence of average body force, they have to be
prescribed by the users using the real numbers u0 x, u0 y and u0 z.

The last four real numbers vel a, vel b, vel c and vel d are used to define the spectrum used
if the velocity field is initialised using init random vec divfree. The first two of these num-
bers are also used to define the amplitude and the orientation of the Taylor Green vortex when
init vel=taylor green.

NAMELIST MAG PARAMETERS AND RELATED VARIABLES

This namelist is read in the subroutine read para only if the logical MAGEQ is true. Otherwise, it is
simply ignored. It contains one integer init mag which is used exactly as init vel. It also contains
the magnetic diffusivity eta, the three modes b0 x, b0 y and b0 z corresponding to kx = ky = kz = 0
and four real numbers mag a, mag b, mag c and mag d that define the spectrum used if the magnetic
field is initialised using init random vec divfree.

NAMELIST SCA PARAMETERS AND RELATED VARIABLES

For each passive scalar, TURBO requires one integer and 5 real numbers. The integer plays the role
of init vel and determines which type of initialisation is used. The first real number is the scalar
diffusivity and the last four real numbers are used to initialise the scalar field and play the same role as
vel a, vel b, vel c and vel d. However, namelists can not contain allocatable arrays. For that reason,
the namelist sca parameters contains 6 arrays of dimensions (1:99): init sca dat, kappa dat,
sca a dat, sca b dat, sca c dat and sca d dat that will be read in the subroutine read para. Only
the first NSCAL real numbers in each of these arrays are used by TURBO and are broadcasted through
the arrays init sca, kappa, sca a, sca b, sca c and sca d which have the dimensions (1:NSCAL).

NAMELIST FORCING PARAMETERS AND RELATED VARIABLES

This namelist contains one integer Fmode and five real numbers kinf, ksup, energy forcing, helicity para,
Famp used to define the forcing. These quantities as well as two additional integers modes layer,
modes outer layer and two other real numbers inj energy and inj helicity will be discussed in
the section 2.4.1.

NAMELIST NUMERICS PARAMETERS AND RELATED VARIABLES

The namelist numerics parameters contains two real numbers dt dat, cfl and four integers fixed dt,
time to zero, dealias, userseed that determine the numerical algorithm used by TURBO. After the
namelist numerics parameters declaration, the real number dt is also declared.
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The first integer fixed dt determines how the time step is computed. If fixed dt=1, then the
time step dt is fixed and takes the value dt dat. If fixed dt=0, the time step varies and is computed
automatically using a CFL criterion based on the cfl number.

The integer dealias determines the algorithm used to remove the aliasing error. Two choices
are proposed. If dealias=1, a four-step, third order Runge-Kutta method is implemented with phase
shifts. If dealias=2 a third-step, third order Runge-Kutta method is implemented with truncation of
one third of the modes. This method is usually referred to as the two-third method. Two constant
integer parameters are defined after the namelist to simplify the reading of the code:

INTEGER, PARAMETER :: shifts = 1

INTEGER, PARAMETER :: twothird = 2

The integer time to zero determines if the time and the number of files that have been saved
(NFIELDS) have to be reset to zero (time to zero=1) or if they must be read from file (time to zero=0).

The last integer userseed is used to initialize the random numbers. If userseed=0, the random
numbers are initialised using date and time, otherwise the value of userseed is used to initialise in a
deterministic way the random number generator. The user can then reproduce exactly the same run if
needed.

NAMELIST TIME PARAMETERS

The quantities contained in the namelist time parameters are the time t, the number of time iteration
already done niter done and the number of times that the fields (velocity, magnetic field, passive
scalars...) have been output to files. This namelist is read in the main part of the code and is output
by the subroutine output.

NAMELIST SAVE PARAMETERS

The subroutine save parameters contains six integers. niter todo represents the total number of
iterations desired in the simulation. Each simulation can be split in several runs. This is useful
when the queueing system on which the code is running imposes constraints such as time limit. The
number of iterations in a run is given by nstep. The integers nsave and nstat represent the number
of iterations between two outputs of files and two computations of global statistics respectively. If
some of the fields are initialised using random numbers with a prescribed spectrum, the code has the
capability to make a number of fake iterations in which the phases of the Fourier mode are allowed
to evolve but the amplitudes are kept constant to fit the prescribed spectrum. This number of fake
iterations is determined by nbuild. Finally, to avoid too large files when the resolution is very high,
TURBO has the capability to output each field in more than one file. This number of file(s) is given by
totpart.

It is important to notice that the following namelists must be present in the parameter files :
equation parameters, dim and sizes, rot parameters, numerics parameters, save parameters.
They will always be read by the subroutine read para. On the contrary, the following namelists are
optional : vel parameters, mag parameters, forcing parameters, sca parameters. They will
be read by the subroutine read para only if required by the values of VELEQ, MAGEQ, SCAEQ and
forcepara.

The namelist time parameters is read by the subroutine read time from the files simuname t.nnn

where nnn is a three digit file number describing the number of files already saved.
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2.2.2 MODULE VARIABLES

The module variables is used to declare all the arrays that represent the fields. These array are
four-dimensional. Indeed, for the velocity vel and the magnetic field mag, three indices correspond
to the three directions in space, while the last index is used to distinguish the vector components:
vel(qx,qz,qy,i). The scalar field scal array is also four-dimensional, but the last index corresponds
to the species. For each of these variables, one work array with the same structure is also declared in
the module. These work arrays are needed by the Runge-Kutta scheme used for time advancement:

COMPLEX, ALLOCATABLE, DIMENSION (:,:,:,:) :: vel, mag, scal

COMPLEX, ALLOCATABLE, DIMENSION (:,:,:,:) :: dvel, dmag, dscal

These arrays are allocated in the subroutine init variables only if needed, depending of the value
of the logicals VELEQ, MAGEQ and SCAEQ.

2.2.3 MODULE FFTWMODULE

This module contains a number of declaration that are needed by the FFTW subroutines. It is part of
the distribution of the FFTW library and will not be discussed further here.
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2.2.4 MODULE MPI VAR

This module contains a number of declaration needed when communication subroutines based on MPI

are used. First, a number of MPI parameters are defined:

- ioid: identification number for the input-output computational node.
- myid: identification number for the current computational node.
- numprocs: number of computational nodes.
- ierr: error code.
- status mpi: mpi communicator

A number of variables needed by FFTW and initialised in the subroutine init fft3d are then
declared:

- local nz: total number of grid points in the z direction on each computational node.
- local z start: first index of the grid points in the z direction on each computational node.
- local ny after transpose: total number of Fourier modes in the y direction on each com-

putational node.
- local y start after transpose: first index of the Fourier modes in the y direction on

each computational node.
- local nr: Total number of Fourier modes on each computational node.

The precision of the simulation depends on the bytes dimensions of the REAL and COMPLEX (which
can be considered as twice the REAL type) format. The default size for REAL is 4 bytes (single pre-
cision) . By using 8 byte REAL type, more accurate simulations may be performed but twice more
memory is needed (both to store variables in RAM and to save the fields on the hard disk). The
computational speed may also be lowered depending on the type of CPU. The code can be compiled
either in single or double precision by modifying one line at the top of the file makefile (realtype).
The size of the real and complex numbers that have to be used in the communication subroutines is
of course also affected and this is taken care of by the following lines that are compiled conditionally
depending of this choice.

#IF SINGLE

INTEGER, PARAMETER :: MPI MYREAL=MPI REAL

INTEGER, PARAMETER :: MPI MYCOMPLEX=MPI COMPLEX

#ENDIF

#IF DOUBLE

INTEGER, PARAMETER :: MPI MYREAL=MPI DOUBLE PRECISION

INTEGER, PARAMETER :: MPI MYCOMPLEX=MPI DOUBLE COMPLEX

#ENDIF

Finally, the module mpi var also declared a number of arrays introduced in 1.3.1 and ?? and
allocated and initialised in 2.5.3 are also declared here (nodey, ystart, ysize, zstart and zsize.
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SECTION 2.3

THE SUBROUTINES AND FUNCTIONS IN FILE: TT FFT.F90

This file contains the Fast Fourier Transform (FFT) subroutines. In the present release of TURBO,
the FFT’s are based on the FFTW library ??. However, for portability and simplicity reasons, these
FFT’s are called using a much simpler syntax and uses only three subroutines. The definitions of
these subroutines allow to limit the changes to the code to this tt fft.f90 file only if another FFT
library should be used.

• fft3ds: preforms the transform from real to complex space.

• ifft3ds: preforms the transform from complex to real space.

• init fft3d: initiates the FFT subroutines.
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2.3.1 FFT3DS

CALL fft3ds(freal,fwave)

This subroutine transforms a tridimensional array of real numbers into a tridimensional array of
Fourier modes using the subroutine rfftwnd f77 mpi from the FFTW library. Several particularities
of this FFTW subroutine deserve some explanation. First, it requires a work array of reals that is
defined by

REAL, ALLOCATABLE, DIMENSION(:) :: work

ALLOCATE(work(0:local nr-1))

Second, the subroutine rfftwnd f77 mpi overwrites the input array by the output. This is an
non desirable properties in TURBO. For this reason, the input freal and the ouput fwave are two
distinct arrays and the first operation of the subroutine is to store the input into the output (using the
proper normalisation parameter Ck):

fwave=freal*Ck

This is possible because both are defined inside the subroutine fft3ds as real arrays:

REAL, INTENT(IN) :: freal(0:rx,0:ry,0:rz)

REAL, INTENT(OUT) :: fwave(0:rx,0:ry,0:rz)

It is important to notice that this property does not prevent to call the subroutine using a complex
array for the output since a complex defined by complex :: fwave(0:cx,0:cz,0:cy) and a real
array have exactly the same size. All the calls to fft3ds are in fact done with a complex array as the
second argument. As mentioned in the section 1.3.2, the order of the last two directions are exchanged
in the Fourier transforms (kz is before ky) for efficiency reasons.
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2.3.2 IFFT3DS

CALL fft3ds(fwave,freal)

This subroutine performs the inverse Fourier transform of an array of complex numbers into an
array of real numbers. It behaves exactly like fft3ds. In particular, both the input and the output
arrays are defined internally as real arrays:

REAL, INTENT(IN) :: fwave(0:rx,0:ry,0:rz)

REAL, INTENT(OUT) :: freal(0:rx,0:ry,0:rz)

but in the calls to ifft3s, the input array is systematically an array of complex number. The nor-
malisation is also imposed:

freal=fwave*Cr

The only minor new feature in ifft3s is that the nonphysical last two values in the x direction are
set to zero:

freal(nx:nx+1,:,:)=0.0
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2.3.3 INIT FFT3D

CALL init fft3d()

This subroutine computes the number of modes Ns and sets the normalization parameters value
for the Fourier tansform using the given values for the resolution nx, ny, nz.

Ns=nx*ny*nz

Ck=1.0

Cr=1.0/Ns

The subroutine actually calls two subroutines from the FFTW library to initialize a number of internal
arrays and also the local dimensions on each node:

cx=nx/2

cy=local ny after transpose-1

cz=nz-1

rx=nx+1

ry=ny-1

rz=local nz-1

TURBO assumes that, on each node, the product of the last two dimensions of real and complex fields
are the same. Indeed, the input and the output of both subroutines fft3ds and ifft3ds must use
the same memory size. There is thus a test that stops the run if (cy+1)*(cz+1).ne.(ry+1)*(rz+1).
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SECTION 2.4

THE SUBROUTINES AND FUNCTIONS IN FILE: TT FORCE.F90

This file contains the subroutines responsible used to force the velocity field. Two distinct ways of
forcing the fluid are implemented. In the first method, an extra term is added to the right-hand side of
the Navier-Stokes equation. It acts as an additional mechanical force. The second method consists in
modifying directly the velocity field, usually by maintaining some of its properties (velocity profile,
energy in a range of wave vectors) constant. The subroutines present in this file are:

• forcing: Forcing by adding a mechanical force in the right-hand side of the Navier-Stokes
equation.

• modify vel: Forcing modifying some velocity properties.

As mentioned in the description of the module parameters, FORCEPARA can take the following values:

- 0 : No forcing term is added in the Navier-Stokes equation.
- 1 : The forcing injects fixed energy and helicity rates in a shell of wave vectors 1.6.1.
- 2 : The forcing imposes fixed energy and helicity levels in a shell of wave vectors 1.6.2.
- 3 : The forcing is defined by the user in an external subroutine external forcing.
- 4 : Kolmogorov forcing.
- 5 : Imposes a number of constraints on the velocity field defined by the user in the external

subroutine external modif vel.

The cases 1, 3 and 4 correspond to a mechanical force and are implemented in the subroutine forcing 2.4.1.
The cases 2 and 5 imply a direct action on the velocity field and are implemented in the subrou-
tine modify vel 2.4.2.
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2.4.1 FORCING

CALL forcing(force)

This subroutine computes the force that will be used to update the velocity if FORCEPARA takes
one of the following values : 1, 3 or 4.

The case FORCEPARA=1 corresponds to a force that injects a certain amount of energy and of
helicity per unit of time (respectively energy forcing and helicity para) in a shell of wave vectors.
The shell of wave vectors is defined by a lower value kinf and a higher value ksup. These four
quantities are part of the namelist force parameters define in the module parameters and read
by the the subroutine read para. Details about how to implement such a forcing can be fount
in the section 1.6.1. The number of modes affected by this forcing is computed in the subroutine
init wavevectors 2.5.3 and is stored into the integer modes layer.

The case FORCEPARA=3 corresponds to a force defined by the user in an external subroutine
external forcing.

The case FORCEPARA=4 corresponds to the Kolmogorov forcing ~f = A sin(ky) ~1x. Since
sin(ky) = (eiky − e−iky)/2, this forcing is easy to express directly in Fourier space and contain
only two modes corresponding to k and −k. This is achieved by the following lines of code:

DO qy=0,cy

qqy=qy+local y start after transpose

IF (qqy.eq.Fmode) force(0,0,qy,1)=-Famp*I*Ns/2.0

IF (qqy.eq.ny-Fmode) force(0,0,qy,1)=+Famp*I*Ns/2.0

END DO

where Fmode is an integer and represents the wave number associated to k and Famp corresponds
to the forcing amplitude A. Both these parameters are part of the namelist force parameters define
in the module parameters and read by the the subroutine read para.

Regardless of the force type chosen above, the zero divergence condition is imposed on the force
at the end of the subroutine.
CALL divfree(force)
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2.4.2 MODIFY VEL

CALL modify vel(u,delta energy,delta helicity)

This subroutine modifies the velocity field for the two cases corresponding to FORCEPARA=2 or 5.
Hence, the complex array u is both an input as well as an output of the subroutine. This subroutine
does not use the module variables, so that the velocity has to be explicitly given as the first argument.
The other two arguments delta energy and delta helicity are two real numbers in which the
variation of energy and the variation of helicity due to the action of the subroutine are measured and
stored. This is easily achieved by computing the energy and the helicity before and after the effect of
the subroutine.

The case FORCEPARA=2 corresponds to a modification of the velocity that maintains the level of
energy and the level of helicity to constant values prescribed by the real numbers energy forcing and
helicity para from the namelist forcing parameters and read by the the subroutine read para.
Details about how to implement this effect can be found in the section 1.6.2. The number of modes
affected by this forcing is computed in the subroutine init wavevectors 2.5.3 and is stored into
the integer modes layer.

The case FORCEPARA=5 corresponds to a modification to the velocity field defined by the user in
an external subroutine external modif vel. Typically, the effect of this subroutine could be to
maintain a constant profile of velocity in one direction.
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SECTION 2.5

THE SUBROUTINES AND FUNCTIONS IN FILE: TT INIT.F90

This file contains the subroutines needed for the initialization of the variables as well as of a number
of arrays needed at various stage in the TURBO code..

• init variables: main subroutine controlling the initialization of variables

• init random seed: Initialize the random number series

• init wavevectors: initialize the wave vectors and related arrays as well as a number of
arrays used to store the data structure.

• init vel field: initialize the velocity field

• init mag field: initialize the magnetic field

• init sca field: initialize the scalar fields

• init TaylorGreen: Taylor Green initial conditions

• init random vec divfree: Create a random vectorial field with zero divergence

• init random scal: create a random scalar field

• buildphases: correlates the mode phases while maintaining the mode amplitudes constant.

• divfree: Take out the divergence.

• zero nhalf: Put to zero all modes corresponding to nx/2, ny/2 and nz/2.

• symmetrize all: Symmetrize all the variables

• symmetrize one: Symmetrize one scalar field in the plane kx=0.
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2.5.1 INIT VARIABLES

CALL init variables()

This subroutine is called by the main TURBO program to initialize a series of important variables
required by the run. First, the fast Fourier transforms and the wave vectors are initialized through
calls to two separate subroutines:

CALL init fft3d()

CALL init wavevectors()

The init fft3d() initialization subroutine is defined in the tt fft.f90 file. It only depends on
the size of the problem that has to be solved (nx,ny,nz), but not on the type of run (Navier-Stokes,
MHD, Quasi-Static, ...).
The init wavevectors() subroutine is defined in the tt init.f90 file. It initializes wave vectors
and other related quantities that depend on the numbers of modes (nx,ny,nz) as well as on the sizes
of the physical domain (lx,ly,lz).

In order to ensure the flexibility of the code, global statistics that are recorded during the sim-
ulation are defined externally. Indeed, depending on the problem considered by the user, different
statistics can be needed (spectra, one dimensional profiles, two dimensional profiles, ...). They usu-
ally required additional variables (arrays) for storage and these arrays must be initialized as well. This
is done using the call

CALL external stats init()

where the subroutine external stats init() is defined in the tt exter.f90 file. In the default
distribution, this subroutine is empty and no initialization is actually performed. It is thus the respon-
sibility of the user to declare properly and to initialize the arrays that could be needed in order to
collect statistics of the flow.

The velocity, magnetic and scalar fields are initialized independently of each other for flexibility.
This allows to initialize and to allocate memory only for the variables that are necessary for the run.

IF (VELEQ) CALL init vel field()

IF (MAGEQ) CALL init mag field()

IF (SCAEQ) CALL init sca field()

!!Warning!! : Since only the variables required in the simulation are initialized, any call that would
try to use a variable that is not updated by the simulation would directly terminate and crash the
run. This could happen in particular when the list of global statistics (computed in the subroutine
external stats compute) have not been properly adapted to the simulation. For instance, any
attempt to compute the magnetic helicity in a Navier-Stokes run will lead to a crash.

Finally, the Fourier mode corresponding to nx/2 or ny/2 or nz/2 are set to zero according to the
discussion in section 1.4 and the variables are symmetrize to take into account that the original fields
are real quantities using the following calls:

CALL zero nhalf()

CALL symmetrize all()
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2.5.2 INIT RANDOM SEED

CALL init random seed()

The initialization of the random numbers used in various subroutines in TURBO can be done either
randomly from the date and time when the parameter userseed is set to 0 or in a determinist way
using the value of this parameter userseed. This choice is made by a fortran case structure. The case
userseed=0 is treated simply using the following fortran call:

CALL RANDOM SEED()

The deterministic computation of the seed can be modified by the user by setting the parameter
userseed to any integer value that will modify the initialization as follows. First, TURBO determines
the number of seeds used by the random number generator

CALL RANDOM SEED(SIZE=nseed)

Then, it set the values of these seeds and store them:

ALLOCATE(seed(nseed))

DO ii=1, nseed

seed(ii)=ii+userseed+myid

END DO

CALL RANDOM SEED(PUT=seed)

DEALLOCATE(seed)

The use of the formula seed(ii)=ii+userseed+myid ensures that a different initialization is used
on the different processors and allows the user to change the seeds by modifying the input parameter
userseed.
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2.5.3 INIT WAVEVECTORS

CALL init wavevectors()

The main purpose of this subroutine is to initialize the wavevectors. However, many other im-
portant variables are also initialized. These different parts are described in their order of appearance.

First, and this is not really an initialization but rather an information to the user given at an early
stage of the run, the precision of the simulation is output. This is done by selecting the size of the type
REAL. The default is a size of 4 bytes. By using an 8 byte REAL type, more accurate simulations may
be performed but twice more memory is needed (both to store variables in RAM and to save the fields
on the hard disk). The computational speed may also be lowered depending on the type of CPU.

IF (myid.eq.ioid) THEN

SELECT CASE (SIZEOF REAL)

CASE(4)

WRITE(6,*) ’This is a single precision run’

CASE(8)

WRITE(6,*) ’This is a double precision run’

END SELECT

END IF

Next, a number of arrays related to the way data are distributed amongst the processors are also
initialized.

• ystart(0:numprocs-1) contains the values of local y start after transpose

• ysize(0:numprocs-1) contains the values of local ny after transpose

• zstart(0:numprocs-1) contains the values of local z start

• zsize(0:numprocs-1) contains the values of local nz

This allows all to have a direct access to the complete information on the data stucture from each
processor. Two closely related arrays, whereis z(0:nz-1,2) and whereis qy(0:ny-1,2) introduced
respectively in the sections 1.3.1 and 1.3.2 are then defined.

Next, a number of arrays related to the wavevectors are allocated and initialized. The related code
lines are not reproduced in details here. The wavevectors are defined as real one dimensional arrays
kx(0:cx), ky(0:cy), kz(0:cz) and are initialized according to the rules given in section 1.3.2.
For simplicity in the writing of the evolution equation and, especially, for expressing derivatives,
complex arrays ikx(0:cx), iky(0:cy), ikz(0:cz) are also defined and initialized as ikx=I*kx,
iky=I*ky and ikz=I*kz. Also, a one dimensional array MM(0:cx) that appears in the expression of
the Parseval theorem is also initialized. Four three-dimensional arrays are also defined and initialized
: knorm and ksquare contains respectively the norm and the square of the norm of the wavevector,
km2 contains the inverse of ksquare corrected to avoid a singularity for ~k = 0 (km2(~k = 0) is set to
1/eps) and zeros twothird is used for the de-aliasing 2/3 method. The smallest distance between
two grid point, dx=lx/nx, dy=ly/ny, dz=lz/nz are computed and if rotation is present, the rot omega

is initialized. The smallest wavevector in each direction, k0x=2π/lx, k0y=2π/ly, k0z=2π/lz (the
largest of these three values is retained to define k0) and the largest wave vector in each direction
kMx=πnx/lx, kMy=πny/ly, kMz=πnz/lz (the smallest of these three values is retained to define kM)
are also computed. For the 2/3 de-aliasing method, the largest wave vectors are computed using the
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kM from the smallest grid (2/3 of the given numeric grid) since only the modes defined on this grid
have physical meaning. Finally, at the end of the subroutine, the number of modes that are included in
the forcing layer defined by kinf < |~k| < ksup is computed and output with a number of parameters
related to the forcing.
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2.5.4 INIT VEL FIELD

CALL init vel field()

This subroutine initializes the velocity field. First memory is allocated to the velocity array and
another array with the same dimension used in the time-stepping procedure.

ALLOCATE(vel(0:cx,0:cz,0:cy,3))

ALLOCATE(dvel(0:cx,0:cz,0:cy,3))

Depending on the init vel parameter value given in the parameter .par file, we have:

• init vel= restart: The initial velocity field of the run is read from a file using the subroutine
read vec divfree (see 2.6.4-2.6.5)

• init vel=random: The initial velocity field is generated using random numbers in the subrou-
tine init random vec divfree.

• init vel=taylor green: The initial field is defined as a Taylor-Green vortex in the subroutine
init Taylor Green.

• init vel=extern: The initial field is defined in an external subroutine external init vel
provided by the user in the file tt exter.f90.

After the field has been read or generated, the zero divergence condition is enforced

CALL divfree(vel)
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2.5.5 INIT MAG FIELD

CALL init mag field()

This subroutine initializes the magnetic field. First memory is allocated to the velocity array and
another array with the same dimension used in the time-stepping procedure.

ALLOCATE(mag(0:cx,0:cz,0:cy,3))

ALLOCATE(dmag(0:cx,0:cz,0:cy,3))

Depending on the init mag parameter value given in the parameter .par file, we have:

• init mag=0: Read existing file

• init mag=1: Initialize as a random field

• init mag=2: Initialize using tha Taylor-Green vortex

• init mag=3: Initialize using a definition provided by the user externally

After the field has been read or generated, the zero divergence condition is enforced

CALL divfree(mag)
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2.5.6 INIT SCA FIELD

CALL init sca field()

This subroutine initializes the scalar fields. First memory is allocated to the scalar collection of
NSCAL fields and other arrays with the same dimension used in the time-stepping procedure.

ALLOCATE(sca(0:cx,0:cz,0:cy,NSCAL))

ALLOCATE(sca(0:cx,0:cz,0:cy,NSCAL))

For each NSCAL, depending on the init sca dat parameter value given in the parameter .par file, we
have:

• init sca dat=0: Read existing file

• init sca dat=1: Initialize as a random field

• init sca dat=2: Initialize using a definition provided by the user externally
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2.5.7 INIT TAYLORGREEN

CALL init TaylorGreen(u, angle, amplitude)

This subroutine initializes the complex vector field u as a Taylor Green vortex. Itdepends on two
parameters: an amplitude and an angleand is defined in real space as follows:

ux(x, y, z) =
2 amplitude√

3
sin(angle +

2π
3

) sin(x) cos(y) cos(z)

uy(x, y, z) =
2 amplitude√

3
sin(angle− 2π

3
) cos(x) sin(y) cos(z)

uz(x, y, z) =
2 amplitude√

3
sin(angle) cos(x) cos(y) sin(z)

In Navier-Stokes turbulence, when the velocity field is initialized as a Taylor Green vortex, it becomes
turbulent and the entire energy spectrum is rapidely filled [?]. This subroutine can be used also to
initialize the magnetic field. The field components are computed using formula (1.21):

DO ix=0, rx

DO iy=0, ry

DO iz= 0, rz

ux(ix,iy,iz)=SIN(ix*lx/nx)*COS(iy*ly/ny)*COS((iz+local z start)*lz/nz)

uy(ix,iy,iz)=COS(ix*lx/nx)*SIN(iy*ly/ny)*COS((iz+local z start)*lz/nz)

uz(ix,iy,iz)=COS(ix*lx/nx)*COS(iy*ly/ny)*SIN((iz+local z start)*lz/nz)

END DO

END DO

END DO

ux=ux*2.0/SQRT(3.0)*amplitude*SIN(angle+twopi/3.0)

uy=uy*2.0/SQRT(3.0)*amplitude*SIN(angle-twopi/3.0)

uz=uz*2.0/SQRT(3.0)*amplitude*SIN(angle)

As mentioned in the section 1.3.1, in the present distribution of TURBO, the Fourier transforms
are obtained using the library FFTW. This library requires that rx=nx+1. The unused grid points
corresponding to nx and nx+1 are set to zero.

ux(nx:nx+1,:,:)=0.0

uy(nx:nx+1,:,:)=0.0

uz(nx:nx+1,:,:)=0.0

Finally the field is Fourier transformed to complex space:
CALL fft3ds(ux,uc)

u(:,:,:,1)=uc

CALL fft3ds(uy,uc)

u(:,:,:,2)=uc

CALL fft3ds(uz,uc)

u(:,:,:,3)=uc
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2.5.8 INIT RANDOM VEC DIVFREE

CALL init random vec divfree(u,pa,pb,pc,pd)

This subroutine generates a random vectorial field u with zero divergence using up to four pa-
rameters pa, pb, pc and pd to define its energy spectrum. The output is the vector field in complex
space.

The subroutine is build to ensure that the same random numbers are generated independtly of
the number of processors used in the computation. Indeed, the random numbers are computed in a
determinist manner based on i) seeds fully determined by the subroutine init random seed and ii)
the number of random numbers that have already been generated. The seeds are computed in a way
that is independent of the number of processors, numprocs. It is thus sufficient to ensure that the same
number of random numbers have already been computed when the random field is generated on the
processor myid.

This is achieved in noting two important properties: 1) as explained below, each vector mode
u(qx,qy,qz,1:3) is constructed using 3 random numbers (φ, θ1 and θ2) and 2) for each value of qy
there are nx*nz/2 vector modes. Hence, each processor will initialize ysize(myid)*nx*nz/2 vector
modes that correspond to qy between ystart(myid) and ystart(myid)+ysize(myid)-1.

The subroutnie init random vec divfree is thus organised in three steps. First, on each pro-
cessor, 3*nx*nz/2*ystart(myid) random numbers are generated but not used. Second 3*nx*nz/2*

ysize(myid)=3*nx*nz/2*cy random numbers are used to build the vector modes with qy between
ystart(myid) and ystart(myid)+ysize(myid)-1. Third, 3*nx*nz/2*(ny-ystart(myid)-ysize
(myid)) random numbers are generated but not used. This last step ensures that on each processor,
when leaving the subroutine, the number of random numbers that have been generated by the call is
exactly 3*nx*nz/2*ny, i.e. a value independent of numprocs.

The first step is achieved using the following lines of code:

IF (myid.ne.ioid) THEN

DO qx=0,3*nx*nz/2*ystart(myid)-1

CALL RANDOM NUMBER(theta1)

END DO

END IF

The second step requires more algebra. The amplitude of the vector modes is computed making
use of the function external energy spectrum(k,pa,pb,pc,pd) defined in the tt exter.f90

file.

A =
(
external energy spectrum

2πk2

)1/2

The vector modes are defined using the following formula:

ux = +αkky + β
kxkz
kkxy

uy = −αkkx + β
kykz
kkxy

(2.1)

uz = −βkxy
k

where α and β are the following functions of the random numbers θ1, θ2 and φ:

α = A cos(2πφ)[cos(2πθ1) + i sin(2πθ1)]
β = A sin(2πφ)[cos(2πθ2) + i sin(2πθ2)]
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and where
kxy =

(
k2
x + k2

y

)1/2
It is easy to show that the formula 2.1 ensures that ~k.~u(~k) = 0 independently of α and β. For kx = 0,
ky = 0 and therefore kxy = 0, we can not use the formula 2.1. In that case, the vector mode is
computed as follows:

ux =
1√
2

(α+ β)

uy =
1√
2

(−α+ β)

uz = 0

The third step is achieved using:

IF((ny-ystart(myid)-ysize(myid)).ne.0)THEN

DO qx=0,3*nx*nz/2*(ny-ystart(myid)-ysize(myid))-1

CALL RANDOM NUMBER(theta1)

END DO

END IF
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2.5.9 INIT RANDOM SCAL

CALL init random scal(sc,pa,pb,pc,pd)

This subroutine generates a random scalar field sc using up to four parameters pa, pb, pc and pd to
define its energy spectrum. The output is the scalar field in complex space. As init random vec divfree,
the subroutine init random scal is build to ensure that the same random numbers are generated
independtly of the number of processors used in the computation. It is organised in three steps, very
similar to those used in init random vec divfree, except that only one random number (instead
of 3) is needed for each mode. We only discuss the second step, in which the amplitude of the modes
is computed making use of the external energy spectrum(k,pa,pb,pc,pd) function defined
in the tt exter.f90 file

A =
(
external energy spectrum

2πk2

)1/2

(2.2)

The scalar field is defined with random phases θ:

s = Aeiθ (2.3)

Here again, starting with the qy loop is important to guarantee equivalence between runs using differ-
ent number of nodes:

DO qy=0,cy

DO qx=0,cx

DO qz=0,cz

CALL RANDOM NUMBER(theta)

theta = twopi*theta

k = MAX(knorm(qx,qz,qy),EPS)

amp = SQRT(external energy spectrum(k,pa,pb,pc,pd)/2.0/pi/k**2)

sc(qx,qz,qy)=amp*EXP(I*theta)

END DO

END DO

END DO
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2.5.10 BUILDPHASES

CALL buildphases()

This subroutine is called only from the subroutine init variables when the user provided
parameter nbuild is larger than 0. In that case, nbuild time steps are used in which all the fields that
are initialized randomly are advanced in time, using:

CALL compute dt()

CALL update variables(iter)

and then rescaled to the spectrum prescibed by the user. For instance, if the velocity is computed
(VELEQ is .true.) and initialized using random numbers, then it is rescaled as follows:

DO qy=0,cy

DO qz=0,cz

DO qx=0,cx

k = MAX(knorm(qx,qz,qy),EPS)

amp1 = SQRT(external energy spectrum(k,vel a,vel b,vel c,vel d)/2.0/pi/k**2)

amp2 = ABS(vel(qx,qz,qy,1))**2+ABS(vel(qx,qz,qy,2))**2+ABS(vel(qx,qz,qy,3))**2

fac = amp1/SQRT(MAX(amp2,EPS))

vel(qx,qz,qy,1:3) = vel(qx,qz,qy,1:3)*fac

END DO

END DO

END DO

The fields that are not initialized as random fields are simply re-initialized to their initial value.
The purpose of this procedure is to build-up the phases of the randomly initialized field so that they do
correspond as much as possible to real turbulence. Indeed, the subroutines init random vec divfree
and init random scal are used to prescribe the amplitudes of the velocity, magnetic or scalar
Fourier modes but the phases of these modes are totally randomly distributed. Actual measurements
of these phases show however that they are not necessarily uniformly distributed. Since it is very
difficult to impose directly a possible phase correlation, using the time integration to produce realistic
phases, while keeping the spectrum constant to impose the Fourier mode amplitudes, is a convenient
way to produce more realistic turbulent fields.

During each of these nbuild time steps, the code alos computes and outputs several global statis-
tics by calling the subroutine external stats compute. It is important to notice that quantities
such as the energy, the dissipation should be unchanged by the rescaling procedure, while kinetic
helicity and magnetic helicity are expected to be modified when the phases are changed.
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2.5.11 DIVFREE

CALL divfree(a)

This subroutine removes the divergence of a vector field a, expressed in the complex space. It modifies
the input vector a by means of the projector operator Pij(~k) ≡ (δij−kikj/k2). If we denote the input
vector field as ain

i and the output divergence free field as aout
i (~k) then we have:

adiv freei (~k) ≡ Pij(~k)ain
j (~k) = (δij −

kikj
k2

)ain
j (~k)

= ai(~k − ki ∇ · ~ain) k−2 (2.4)

This is easily achieved using the following lines:

DO qy=0, cy

k2=ky(qy)

DO qz= 0, cz

k3=kz(qz)

DO qx=0, cx

k1=kx(qx)

div=(k1*a(qx,qz,qy,1)+k2*a(qx,qz,qy,2)+k3*a(qx,qz,qy,3))*km2(qx,qz,qy)

a(qx,qz,qy,1)=a(qx,qz,qy,1)-k1*div

a(qx,qz,qy,2)=a(qx,qz,qy,2)-k2*div

a(qx,qz,qy,3)=a(qx,qz,qy,3)-k3*div

END DO

END DO

END DO
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2.5.12 ZERO NHALF

CALL zero nhalf()

According to the discussion in section 1.4, the Fourier modes corresponding to nx/2 or ny/2 or
nz/2 have to be set to zero. As far as the modes with nx/2 and nz/2 are concerned, this is easy to
achieve. For instance, if we consider the velocity field, these modes are set to zero as follows:

vel(nx/2,:,:,:)=0

vel(:,nz/2,:,:)=0

The modes corresponding to ny/2 have to be treated a bit more carefully since we have to deter-
mine which processor is in charge of theses modes. However, this information is easily derived from
the tensor whereis ky:

proc id = whereis ky(ny/2,1)

qqy = whereis ky(ny/2,2)

where proc id gives the processor id where modes ny/2 are stored and qqy gives the location of
theses modes on this processor. The modes ny/2 are then set to zero as follows:

IF (myid.eq.proc id) THEN

vel(:,:,qqy,:) =0

END IF

!!Warning!! : The subroutine zero nhalf also sets to zero the modes of the work arrays dvel, dmag
and dscal depending on the type of simulation. This subroutine can thus only be called once these
work arrays have been properly allocated.
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2.5.13 SYMMETRIZE ALL

CALL symmetrize all()

Subroutine used to symmetrize all the variables depending on the problem (Nabier-Stokes, MHD,
...). See the subroutine symmetrize one below for details.
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2.5.14 SYMMETRIZE ONE

CALL symmetrize one(s)

In most of the modern FFT libraries, the Fourier transform of a real array is stored as a complex
array s with half the dimension in one direction in order to take into account the property 1.11. In
the case of the FFTW used in TURBO, the first direction has dimension nx in real space and nx/2 in
Fourier space and the transform automatically assumes that the modes with negative component of
the wave vector, kx, are the complex conjugate of the modes with the opposite (and thus positive) kx.
However, when initializing an array in Fourier space, a number of additional conditions on the modes
with kx=0 have to be imposed:

s̃d(0, kz, ky)∗ = s̃d(0,−kz,−ky) . (2.5)

These additional conditions are split into two part.

A) First, for stricly positive ky, the index qy is determined and is stored into qy1 while the in-
dex corresponding to -ky is ny-qy and is stored inot qy2. Simultaneously, the id of the processors
that store the modes corresponding to qy1 and qy2 as well as the local index of these modes are
determined:

qy1=qy

qy2=ny-qy

pid1=whereis ky(qy1,1)

pid2=whereis ky(qy2,1)

qqy1=whereis ky(qy1,2)

qqy2=whereis ky(qy2,2)

If pid1 is different from pid2, the one-dimensional array s(0,:,qqy1) is sent from processor pid1
to processor pid2 and is stored in the array sb

IF (myid.eq.pid1) CALL MPI SEND(s(0,:,qqy1),nz,MPI MYCOMPLEX,pid2,10,MPI COMM WORLD,ierr)

IF (myid.eq.pid2) CALL MPI RECV(sb ,nz,MPI MYCOMPLEX,pid1,10,MPI COMM WORLD,status mpi,ierr)

Otherwise (pid1=pid2), sb is computed locally:

IF (myid.eq.pid1) sb=s(0,:,qqy1)

Then, on the node pid2 the relation 2.5 is imposed :

IF (myid.eq.pid2) s(0,:,qqy2)=CONJG(sb)

B) Second, for ky=0, the corresponding processor and local index are first determined:

pid1=whereis ky(0,1)

qqy1=whereis ky(0,2)

Then, the condition ãd(0, kz, 0)∗ = ãd(0,−kz, 0) is imposed:

IF (myid.eq.pid1) THEN

DO qz=1,nz/2-1

s(0,nz-qz,qqy1) = CONJG(s(0,qz,qqy1))

END DO

END IF
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SECTION 2.6

THE SUBROUTINES AND FUNCTIONS IN FILE: TT IO.F90

This file contains the subroutines responsible for the input and the output for TURBO. To understand
these subroutines, it is recommended that the reader familiarizes himself with the structure of the
parameter file (section ??) and the way the simulation is resumed (section ??).
The subroutines contained in this file and their main function are:

• output: the main output subroutine

• write vec divfree: writes divergent free vector fields to disk

• read vec divfree: reads divergent free vector fields from disk

• write scal: writes scalar fields to disk

• read scal: reads scalar fields from disk

• read time: reads the time and restart parameters

• read para: reads the parameter files

2.6.1 FILE FORMAT

The velocity and magnetic field vectors as well as the scalar fields are saved in direct acces files
as a collection of records, corresponding to slices of Fourier modes. A slice is defined as a two-
dimensional complex array slice(0:cx,0:cz). Considering the Fourier space representation 1.3.2
of fields in TURBO, all the Fourier modes corresponding to a slice are always handled by a unique
processor. Typical slices are vel(:,:,qy,i) or scal(:,:,qy,iscal). The length of a slice is inde-
pendent of the node index (myid) and is determined by

reclength=2*(cx+1)*(cz+1)*SIZEOF REAL

The files are opened using the following command lines:

OPEN (UNIT=10, FILE=filename, STATUS=’UNKNOWN’, ACTION=’WRITE’,ACCESS=’DIRECT’,&

FORM=’UNFORMATTED’, RecL=reclength)

2.6.2 INPUT/OUPUT NODE

The mpi var module defines the parameter ioid=0. It is used to determine the value of the node
index from which all the “write to” and “read from” file operations are performed. A subroutine
transfer slice has been defined to send the data in a slice from one node to another. In practice,
it is used to collect the slices from all nodes to the ioid node in the subroutines write vec divfree
and write scal, while is it used to send the slices from the node ioid to the appropriate nodes in
the subroutines read vec divfree and read scal.
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2.6.3 OUTPUT

CALL output(save stat)

This simple subroutine is responsible for the saving the fields at the current time of the simula-
tions. The fields that are output depend of course on the simulation type. Velocity and magnetic fields
are saved to files using the subroutine write vec divfree, while the scalar fields are saved using
the subroutine wirte scal. Both subroutines are described below.

It also output two files with information on the current time and the index of the last saved field.
This index is stored in the integer nfields and is transformed into an array of 3 characters cnum using

WRITE(cnum,’(i3.3)’) nfields

Hence, if nfields=12 the value stored in the cnum is 012. If the simulation name is “mysimu”,
the namelist time parameters is then saved into the file mysimu t 012. Simulataneously, the code
saves the value of nfield into the file mysimu.n.

Intermediate statistics files are then saved if the integer argument save stat=1 using the following
calls:

CALL external stats write()

CALL external stats end()

CALL external stats init()

These statistics are intended to be running averages of a number of relevant quantities. Obviously,
these quantities will depend on both the type of simulation as well as of the specific interest of the user.
For these reasons, they are computed using external subroutine from the file xx exter.f90. The first
call obviously save the intermediate statistics. The second call is intended to stop the computation of
running average. The third one, re-initialize the arrays needed in the computation of the intermediate
statistics.

Finally, the subroutine updates the value of the parameter nfields.
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2.6.4 WRITE VEC DIVFREE

CALL write vec divfree(u,beginname)

This subroutine saves the Fourier space representation of a divergence free vector field u, typically
a velocity or a magnetic field, into one file or several files (see also 2.6.1 and 2.6.2). The field is
declared by:

COMPLEX, DIMENSION(0:cx,0:cz,0:cy,3), INTENT(IN) :: u

The number of files used to save the vector u in several files is determined by the parameter totpart.
Splitting the files is useful when very high resolutions are used. The ratio ny/totpart must be an
integer otherwise the run stops. The names of the files depend on the number of previously stored
fields through the value of nfields. For example, assuming that the simulation name is “mysimu” and
considering nfields=12 and totpart=2, the velocity field will be stored in two files corresponding
to two values of the parameter ipart (0 and 1). The file names are then mysimu u00.012 and
mysimu u01.012. These names are built using the commands:

WRITE(cnum,’(i3.3)’) nfields

WRITE(partnum,’(i2.2)’) ipart

filename=beginname//partnum//’.’//cnum

The input and output subroutines in TURBO take advantage of the divergence free condition to
save only two components of the vector in Fourier space, typically the component u(:,:,:,1) and
u(:,:,:,3). Indeed, the last component can be reconstructed using the divergence free condition:

kj ũj ≡ kxũx + kyũy + kzũz = 0⇒ ũy =
−(kxũx + kzũz)

ky
(2.6)

However, the component with ky = 0 cannot reconstructed using this formula and the subroutine
also saves the modes corresponding to the slice u(:,:,0,1) at the beginning of the first file using the
following commands:

IF (ipart.eq.0) THEN

pid=whereis ky(0,1)

qqy=whereis ky(0,2)

CALL transfer slice(u(:,:,qqy,2),pid,utempx,ioid)

IF (myid.eq.ioid) THEN

WRITE(10,rec=reccount) utempx

reccount=2

END IF

END IF

where the array where is is used to find on which node (pid) and at which location (qqy) the slice
corresponding to ky = 0 is stored. The final part of the subroutine is a loop on qy in which the slices
u(:,:,qy,1) and u(:,:,qy,3) are sent to the node ioid and then written to the appropriate file.

The number of slices, or equivalently the number of records, saved in the first file (ipart=0)
generated by the subroutine write vec divfree is thus 2 ny / totpart + 1, while the other files
store 2 ny / totpart slices. If only one part is used (totpart=1), the vector fields are saved on disk
using a unique direct access file with 2 ny + 1 records, each of them corresponding to a slice. The
first slice correspond to ky = 0 and component y, then ky = k0

y for the component x followed by the
component z, then ky = 2 k0

y for the component x followed by the component z and so on...
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2.6.5 READ VEC DIVFREE

CALL read vec divfree(u,beginname)

This subroutine is very similar to the subroutine write vec divfree except that it reads from
file and dispatch the information to the appropriate nodes instead of gathering inofrmation from the
nodes and save to file. The structures of both subroutines are thus very similar.

Once the files have been read, the y component of the vector is reconstructed (except for ky = 0)
using the following commands:

DO qy=0,cy

IF (ABS(ky(qy)).gt.EPS) THEN

DO qz=0, cz

DO qx=0, cx

u(qx,qz,qy,2)=-(u(qx,qz,qy,1)*kx(qx)+u(qx,qz,qy,3)*kz(qz))/ky(qy)

END DO

END DO

END IF

END DO
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2.6.6 WRITE SCAL

CALL write scal(s,beginname)

This subroutine is used to write a scalar field to file. The subroutine structure is very similar to the
one described in the subroutine write vec divfree. The subroutine write scal could actually
be used to output the components of a vector individually if needed for postprocesing.

The name of the file is a little bit different. Indeed, considering the scalar field with iscal=3, and
assuming that the simulation name is “mysimu” and again that nfields=12 and totpart=2, the scalar
field will be stored in two files corresponding : mysimu s03.00.012 and mysimu s03.01.012.
These names are built using the commands:
CHARACTER(LEN=2) :: partnum

WRITE(partnum,’(i2.2)’) ipart

filename=beginname//partnum//’.’//cnum
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2.6.7 READ SCAL

CALL read scal(s,beginname)

This subroutine is very similar to the subroutine write scal except that it reads from file and
dispatch the information to the appropriate nodes instead of gathering inofrmation from the nodes and
save to file. The structures of both subroutines are thus very similar.
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2.6.8 READ TIME

CALL read time()

The subroutine initalizes the parameter stored in the namelist time parameters. Its action de-
pends on the input parameter time to zero. If time to zero=1, the values of the parameters in the
namelist time parameters are set to their default value (t=0, niter done=0 and nfields=0).

The fisrt parameter t is obviously the time. It is a real number. The second parameter niter done

is the total number of iterations that have already been performed in previous runs of the simulation.
This parameter is useful for long simulation that have to be split into several runs for computer queue
constraints. The third parameter, nfields, refers to the number of files that have already saved.
Indeed, the subroutine write vec divfree and write scal are used to save on files snapshots of
the variables in the course of the simulation. Each time these files are saved, nfield is incremented
by 1, its value is stored into the file simname.n and a file simname t.cnum is created with the
current value of the namelist time parameters (see 2.6.3).

If time to zero=0, then the value of nfields is read from the file simname.n and the parameters
in the namelist time parameters are read from the file simname t.cnum

The subroutine also broadcasts the three parameters to all computational nodes:

CALL MPI BCAST(niter done,1,MPI INTEGER,ioid,MPI COMM WORLD,ierr)

CALL MPI BCAST(nfields,1,MPI INTEGER,ioid,MPI COMM WORLD,ierr)

CALL MPI BCAST(t,1,MPI MYREAL,ioid,MPI COMM WORLD,ierr)
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2.6.9 READ PARA

CALL read para()

This subroutine is responsible for reading the parameter of the simulation. It is called at the begin-
ning of the main program. Though this subroutine is quite long, it is rather simple and mainly reads
a series of namelists and broadcasts the parameters to all the computational nodes. Some information
on the type of simulation is output on screen. A few parameters are initialized directly as their use
will be required immediately such as the logical parameters. These parameters are:

• VELEQ: its value is set to .TRUE. if the velocity field is computed, .FALSE. if not.

• MAGEQ: its value is set to .TRUE. if the magnetic field is computed, .FALSE. if not.

• SCAEQ: its value is set to .TRUE. if the scalar field is computed, .FALSE. if not.

• ROTEQ: its value is set to .TRUE. if rigid rotation is imposed, .FALSE. if not.

The above parameters allow the code to be flexible and only allocate memory or perform computation
if needed. For instance if MAGEQ=.FALSE., no magnetic field equation will be solved. As a conse-
quence, no memory will be allocated to the magnetic related arrays, no computation performed using
the magnetic field and even the parameters list related to the magnetic field mag parameters will not
be read.

The namelists that are read (if needed) are listed here:

• equation parameters

• vel parameters

• mag parameters

• sca parameters

• dim and sizes

• forcing parameters

• numerics parameters

• save parameters

To understand better the namelist refer to the section ??.
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2.6.10 TRANSFER SLICE

CALL transfer slice(slice,fromid,destination,destid)

This subroutine simply send the information stored in the variable slice on the node fromid to
the variable destination on the node destid. Both slice and destination are supposed to be
complex arrays of dimensions (0:cx,0:cz). The information is sent by using the MPI commands
“MPI SEND” and “MPI RECV” if the node indices fromid and destid are different. Otherwise, a
simple equality is used:

IF (destid.ne.fromid) THEN

IF (myid.eq.fromid) CALL MPI SEND(slice,(cx+1)*(cz+1),

MPI MYCOMPLEX,destid,10,MPI COMM WORLD,ierr)

IF (myid.eq.destid) CALL MPI RECV(destination,(cx+1)*(cz+1),

MPI MYCOMPLEX,fromid,10,MPI COMM WORLD,status mpi,ierr)

ELSE

IF (myid.eq.destid) destination=slice

END IF
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SECTION 2.7

THE SUBROUTINES IN THE FILE: TT STAT.F90

This file contains the subroutines that compute a number of global statistics. The subroutines con-
tained in this file and their main function are:

• correl vector: computes the correlation between two vectors quantities.

• correl scalar: computes the correlation between two scalar quantities.

• correl helicity: computes the correlation between a vector and the curl of another vector.

• compute diss QS: computes the quasi static dissipation.

• compute energy real: computes the energy in real space.

• compute Rlambda: computes Rλ.

• compute kmaxeta: computes kmax η.

Most of these subroutines (2.7.1, 2.7.2, 2.7.3, 2.7.4 and 2.7.5) compute sums over very large
number of terms in order to approximate some integrals. If they are computed in a single precision
run, the result might depend on the number of nodes used for the computation. A better accuracy
is obtained by computing internally (i.e. inside these subroutines) the sums using double precision,
independently of the type of run chosen (single or double precision). This has been implemented.
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2.7.1 CORREL VECTOR

CALL correl vector(a1,a2,j,factor,result)

The input variables and input parameters are defined as
COMPLEX, DIMENSION(0:cx,0:cz,0:cy,3), INTENT(IN) :: a1, a2

INTEGER, INTENT(IN) :: j

REAL, INTENT(IN) :: factor

This subroutine computes the following quantity C (` is assumed to be integer):

C =
factor

V

∫
d~x
(

∆j/2~a1(~x)
)
· ~a2(~x) (2.7)

=
factor

V

∫
d~x
(

∆j/2−`~a1(~x)
)
·
(

∆`~a2(~x)
)

(2.8)

=
factor

V

∫
d~x ~a1(~x) ·

(
∆j/2~a2(~x)

)
(2.9)

and stores it into the real number result. The equality between the above expressions is valid because
TURBO is restricted to problems with periodic boundary conditions (see section 1.5 for details on how
this type of integrals can be computed using TURBO). Examples of quantities that can be computed
with this subroutine are:

• The kinetic energy per unit of volume ek (~a1 = ~a2 = ~u, j = 0, factor = 0.5).

• The energy injection rate per unit of volume εinj due to an external forcing ~f (~a1 = ~u, ~a2 = ~f ,
j = 0, factor = 1.0).

• The enstrophy per unit of volume Ω (~a1 = ~a2 = ~u, j = 2, factor = −0.5).

• The kinetic energy dissipation εu (~a1 = ~a2 = ~u, j = 2, factor = ν).

• The palinstrophy per unit of volume P (~a1 = ~a2 = ~u, j = 4, factor = 0.5). Note that the
palinstrophy multiplied by −2ν gives the dissipation of enstrophy per unit of volume.

• The cross-helicity per unit of volume hc (~a1 = ~u, ~a2 = ~b, j = 0, factor = 1.0).

• The integral length Lint (~a1 = ~a2 = ~u, j = −1, factor = −0.75π/ek).

• The magnetic energy per unit of volume ek (~a1 = ~a2 = ~b, j = 0, factor = 0.5).

• The magnetic energy dissipation εb (~a1 = ~a2 = ~b, j = 2, factor = η).
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2.7.2 CORREL SCALAR

CALL correl scalar(s1,s2,j,factor,result)

The input variables and input parameters are defined as

COMPLEX, DIMENSION(0:cx,0:cz,0:cy), INTENT(IN) :: s1, s2

INTEGER, INTENT(IN) :: j

REAL, INTENT(IN) :: factor

This subroutine computes the following quantity C (` is assumed to be integer):

C =
factor

V

∫
d~x
(

∆j/2−`s1(~x)
)(

∆`s2(~x)
)
, (2.10)

=
factor

V

∫
d~x
(

∆j/2−`s1(~x)
)
·
(

∆`∂2
xs2(~x)

)
, (2.11)

and stores it into the real number result1. The equality between the above expressions is valid
because TURBO is restricted to problems with periodic boundary conditions (see section 1.5 for details
on how this type of integrals can be computed using TURBO). Examples of quantities that can be
computed with this subroutine are:

• The correlation between two scalars (j = 0, factor=1).

• The fluctuation of a scalar quantity (s1 = s2 = s, j = 0, factor=1).

• The dissipation of fluctuations of a scalar quantity (s1 = s2 = s, j = 2, factor=1).
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2.7.3 CORREL HELICITY

CALL correl helicity(s1,s2,j,factor,result)

The input variables and input parameters are defined as

COMPLEX, DIMENSION(0:cx,0:cz,0:cy,3), INTENT(IN) :: a1, a2

INTEGER, INTENT(IN) :: j

REAL, INTENT(IN) :: factor

This subroutine computes the following quantity C (` is assumed to be integer):

C =
factor

V

∫
d~x
(

∆j/2~a1(~x)
)
· (∇× ~a2(~x)) , (2.12)

=
factor

V

∫
d~x ∆`~a1(~x) ·

(
∇×∆j/2−`~a2(~x)

)
, (2.13)

=
factor

V

∫
d~x ~a1(~x) ·

(
∇×∆j/2~a2(~x)

)
, (2.14)

and stores it into the real number result1. The equality between the above expressions is valid
because TURBO is restricted to problems with periodic boundary conditions (see section 1.5 for details
on how this type of integrals can be computed using TURBO). Examples of quantities that can be
computed with this subroutine are:

• The kinetic helicity per unit of volume hk (~a1 = ~a2 = ~u, j = 0, factor=1).

• The magnetic helicity per unit of volume hb (~a1 = ~a2 = ~b, j = −2, factor=1).

• The dissipation of kinetic helicity per unit of volume εhk (~a1 = ~a2 = ~u, j = 2, factor= −2 ν).

• The dissipation of magnetic helicity per unit of volume εhb (~a1 = ~a2 = ~b, j = 0, factor=
−2 η).
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2.7.4 COMPUTE DISS QS

CALL compute diss QS(u,omegaQS)

The input variables are defined as

COMPLEX, DIMENSION(0:cx,0:cz,0:cy,3), INTENT(IN) :: u

This subroutine computes the quantity omegaQS defined as:

omegaQS =
1

~B2 V

∫
d~x

(
( ~B.∇)2

∇2

)
(~u(~x) · ~u(~x)) ,

where ~B is a constant magnetic field. Its direction is not imposed and is prescribed by the values of the
zero modes of the magnetic field that have to be given by the user in the namelist mag parameters.
This subroutine is useful to compute the Joule dissipation in the quasi-static approximation, after
multiplication by the interaction parameter.
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2.7.5 COMPUTE ENERGY REAL

CALL compute energy real(a,ener)

The input variables are defined as

COMPLEX, DIMENSION(0:cx,0:cz,0:cy,3), INTENT(IN) :: a

This subroutine computes the quantity ener defined as:

ener =
1

2V

∫
d~x ~a(~x) · ~a(~x)

The main purpose of this subroutine is to allow the user to verify the accuracy of the energy value
computed using the correl vector subroutine. As a consequence of the Parseval’s theorem, the
energy computed using the following two calls

CALL compute energy real(u,ener)

CALL correl vector(u,u,0,0.5,ener)

should be the same. However, because it requires calls to FFT subroutines, the subroutine compute energy real
is much more time consuming and the use of the subroutine correl vector should definitively be
preferred.
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2.7.6 COMPUTE RLAMBDA

CALL compute Rlambda(energy,dissipation,Rlambda)

This very simple subroutine computes the quantity Rlambda, known as the Taylor-scale Reynolds
number, defined as:

Rlambda =
u′λ

ν

where u′ represents the root mean square of one component of the velocity field. In isotropic turbu-
lence, the choice of the component, ux, uy or uz should not influence the value of u′. However, in

anisotropic turbulence, it is preferable to replace it by a function of the total energy u′ =
(

2E
3

)1/2
.

The Taylor microscale is defined by λ =
(

10νE
ε

)1/2
. The parameter Rlambda is thus given by

Rlambda =
(

5
3νε

)1/2

2E

where ν is the viscosity, ε is the dissipation and E is the kinetic energy. It is important to note,
however, that this parameter may give a very poor diagnostics in strongly anisotropic turbulence
since it is build using quantities that mix information from all three components of the velocity field.
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2.7.7 COMPUTE KMAXETA

CALL compute kmaxeta(dissipation,kmaxeta)

This simple subroutine is used to evaluate the accuracy of the run. In isotropic Navier-Stokes tur-
bulence, the dimensionless product of the largest wave vector kmax and of the Kolmogorov dissipation
length η, defined as

η = (
ν3

ε
)1/4

where ε is the dissipation, is supposed to be of the order (or larger than) 1.5. In this case, it is
usually considered that a sufficiently large fraction of the dissipation range is numerically resolved.
Of course, this is only true for relatively low order of the statistics of the velocity field and of its
low order derivatives. The subroutine compute kmaxeta simply computes this product. The output
is the product kmax η. It is important to note, however, that this parameter may give a very poor
diagnostics on the accuracy of the simulation in strongly anisotropic turbulence since it is build using
quantities that mix information from all three components of the velocity field.
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SECTION 2.8

THE SUBROUTINES IN THE FILE: TT UPDATE.F90

This file contains the subroutines used for computing the evolution of the variables and computing
the time step. TURBO can use two different methods for removing the aliasing errors: the phase shift
method and the two-third (2/3) truncation method (see 1.7.2). The subroutine update variables
chooses which of this methods is going to be used in function of the dealias switch value. The file
tt update.f90 contains the following subroutines:

• update variables: Updates all the variables using the appropriate Runge-Kutta scheme.

• rk3 twothird: Runge-Kutta subroutine using the two-third dealiasing method.

• rk4 shifts: Runge-Kutta subroutine using the phase shift dealiasing method.

• rk step: Runge-Kutta step.

• rk shiftgrid: Computes the effect of a grid shift on all the variables.

• rk nonlin: Computes the nonlinear terms in the Runge-Kutta scheme.

• rk nonlin add: Intermediate subroutine in the Runge-Kutta scheme.

• rk forcing: Computes the forcing term.

• rk expon: Computes the exponential factors due to linear (dissipative as well as rotation)
terms.

• rk endstep: Runge-Kutta end step for both dealiasing methods.

• compute dt: computes the time step.
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2.8.1 UPDATE VARIABLES

CALL update variables(iter)

This subroutine is called by the main TURBO program and is used to compute the variables at time
t+dt from the knowledge of the variables at time t. It requires work arrays dvel, dmag and dscal that
are allocated only if they are needed depending on the value of the logicals VELEQ, MAGEQ and SCAEQ.
It also initializes to zero inj energy and inj helicity if VELEQ is true. These two parameters are
used to compute the energy and helicity injection when a forcing mechanism is used in the velocity
equation.

The subroutine then calls another subroutine depending on the value of the input parameter
dealias. If dealias=1, a four step Runge-Kutta algorithm based on a grid shifting is used and is
implemented in the subroutine rk4 shift. If dealias=2, a three step Runge-Kutta algorithm based
on the two-third truncation method is used and is implemented in the subroutine rk3 twothird.
Both these techniques are described in the section 1.7.2 while the Runge Kutta algorithm is discussed
in section 1.7.1.

At the end, the symmetry properties needed to insure that the Fourier modes do correspond to real
scalar and vector fields are imposed by a call to the subroutine symmetrize all 2.5.13.
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2.8.2 RK3 TWOTHIRD

CALL rk3 twothird()

This subroutine is used to compute the updated variables using a three step Runge-Kutta algorithm
based on the two-third truncation method (see 1.7.1). The parameters used in the Runge-Kutta scheme
are defined in 1.68. They are declared at the beginning of the subroutine.

The Runge-Kutta algorithm is described by the equations 1.65 and 1.66 which we reproduce here
for convenience: {

ki = e−νξih (ki−1 + γi N(yi−1))
yi = e−νξih (yi−1 + αi h N(yi−1)) + βi ki h

(2.15)

Each of these steps can be decomposed into three manipulations. First, the nonlinear term N(y) has
to be computed and added to both k and y as follows:{

k → k + γi N(y)
y → y + αi h N(y)

(2.16)

This is achieved by calling the subroutine rk nlstep(al,ga,substep) 2.8.4. This subroutine
actually also includes the computation of external forcing terms if they are not linear functions of
the velocity. This excludes the Lorentz force in the quasi-static approximation and the Coriolis force
when a global rotation is imposed which are treated analytically through the exponential factors, as
well as the linear dissipative terms (viscosity, resistivity, diffusion):{

k → e−νξihk
y → e−νξihy

(2.17)

This is achieved by calling the subroutine rk expon(fac) 2.8.8. The real number fac represents
the product ξi h ≡ ξi dt. Finally, the term βi ki h has to be added:

y → y + βi ki h (2.18)

This is achieved into the subroutine rk endstep() 2.8.9.
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2.8.3 RK4 SHIFT

CALL rk4 shift(iter)

This subroutine is used to compute the updated variables using a four step Runge-Kutta algorithm
based on the grid shifting method (see 1.7.1). The parameters used in the Runge-Kutta scheme are
defined in 1.69. They are declared at the beginning of the subroutine.

As explained in Section 1.7.1, the total removal of the aliasing error would require 8 evaluations
of the nonlinear terms on 8 different grids at each substep of the Runge-Kutta scheme. This would
be prohibitively expensive. The strategy adopted here is to evaluate the nonlinear terms on the 8
different grids over two successive time steps, each of them having 4 substeps. The Runge-Kutta
scheme is designed so that each nonlinear contribution from the 4 substeps enters in the evaluation of
the updated variables with the same weight, at least at the lowest order in dt. Moreover, the time step
dt is kept unchanged over two successive time steps so that 8 successive evaluations of the nonlinear
terms contribute with the same weight to the updated variables, at lowest order in dt.

However, since these eight evaluations are not performed at exactly the same time, this procedure
does not remove totally the aliasing error but increase its order by a factor dt. The aliasing error is
further decreased by using random shifts modified every two time steps. In practice, these random
shifts introduce a random noise that multiplies only the aliasing error and thus reduces its impact on
the accuracy of the algorithm. An integer odd even is defined to determine if the iteration number
iter is odd (odd even=0) or even (odd even=1). Since the first iteration corresponds to iter=1, the
random shifts have to be computed if and only if (odd even=0). The random shifts have to be the same
on all the nodes. They are thus computed only on the node with myid=ioid and then broadcasted to
all the other nodes.

Since the Runge-Kutta scheme has been chosen with ξ2 = ξ3 = 0, there is no call to rk expon
in the second and third substeps of the algorithm.
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2.8.4 RK NLSTEP

CALL rk nlstep(al,ga,substep)

This subroutine computes the nonlinear terms and the forcing (except the Lorentz force in the
quasi-static approximation and the Coriolis force when a global rotation is imposed which are taken
into account in the exponential factors in the subroutine rk expon).

The first part of the subroutine is used only when dealiasing is performed using grid shifting. It
is used to define the shifts used in the different substeps. They correspond to random shifts rsx, rsy
and rsz defined in the subroutine rk4 shift and systematic shifts corresponding to a quarter of grid
spacing ∆ in each direction (so that each grid is shifted by half a grid spacing in at least one direction
when compared to another grid). These systematic shifts are defined as follows:

sx = +∆x/4, sy = +∆y/4, sz = +∆z/4 odd value of iter substep=1
sx = −∆x/4, sy = +∆y/4, sz = +∆z/4 odd value of iter substep=2
sx = +∆x/4, sy = −∆y/4, sz = +∆z/4 odd value of iter substep=3
sx = +∆x/4, sy = +∆y/4, sz = −∆z/4 odd value of iter substep=4
sx = −∆x/4, sy = −∆y/4, sz = −∆z/4 even value of iter substep=1
sx = +∆x/4, sy = −∆y/4, sz = −∆z/4 even value of iter substep=2
sx = −∆x/4, sy = +∆y/4, sz = −∆z/4 even value of iter substep=3
sx = −∆x/4, sy = −∆y/4, sz = +∆z/4 even value of iter substep=4

(2.19)

The random and systematic shifts are then summed into the integers sx, sy and sz and applied by a
call to the subroutine rk shiftgrid 2.8.5.

CALL rk shiftgrid(sx,sy,sz)

The subroutine then computes the nonlinear terms ∂j(uiuj), ∂j(uibj), ∂j(bibj) or ∂j(cαuj) de-
pending on the nature of the problem. These nonlinear terms are computed and added to the variables
and to the work arrays respectively with the weights al dt and ga by the call

CALL rk nonlin(al,ga)

The lines of code that follow this call are used to remove the aliasing error. If the grid shifting pro-
cedure is used, the variables are re-expressed on the original grid. If the two-third truncation method
is used, the Fourier modes that have to be removed are set to zero by multiplying the variables and
the work arrays by an pre-defined array zeros twothird, initialized in init wavevectors 2.5.3. It
is either 1 if the wave vector has to be retained or 0 if it has to be set to zero.

Next, the flow incompressibility condition (∇ · ~u = 0) and the magnetic field zero divergence
(∇ ·~b = 0) are enforced for the main (vel, mag) and work arrays (dvel, dmag).

The last part is used to impose the forcing that would not be accounted for in the exponential
factor. Two distinct ways of forcing the fluid are implemented. In the first method, an extra term is
added to the right-hand side of the Navier-Stokes equation (cases FORCEPARA=1,3,4). It acts as an
additional mechanical force. In the last substep of the Runge-Kutta method, the energy and helicity
injection rates are also computed. They are given respectively by the correlation of the force with
the velocity and the vorticity. The second method consists in modifying directly the velocity field,
usually by keeping constant some of its properties, such as the velocity profile or the energy in a
range of wave vectors (cases FORCEPARA=2,5). In that case, the energy and helicity injection rates are
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computed directly by measuring these quantities before and after the modifications imposed to the
velocity. These differences are accumulated over all the substeps.
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2.8.5 RK SHIFTGRID

CALL rk shiftgrid(shiftx,shifty,shiftz)

This subroutine is very simple. It computes the factors that multiply the Fourier modes when the
computational grid is shifted and multiplies all the variables by these factors, depending of course of
the value of the logicals VELEQ, MAGEQ and SCAEQ. The input real numbers correspond to the shifts:

REAL , INTENT(IN) :: shiftx, shifty, shiftz

The factors are computed in the array expo and correspond to

ei(kxshiftx+kyshifty+kzshiftz) (2.20)
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2.8.6 RK NONLIN

CALL rk nonlin(al,ga)

This subroutine is the core of the TURBO code. Indeed, it computes the nonlinear term and adds
it to the variables and to the work arrays with weights al*dt and ga respectively as described by the
equation 2.16.

Firstly, the subroutine allocates the arrays ur1, ur2, ur3 and br1, br2, br3 for the expression
of the velocity and the magnetic field in real space if required (depending on the values of VELEQ and
MAGEQ) and makes the inverse Fourier transforms. It then computes, again if needed by the type of
simulation, the nonlinear terms and adds them to the variable arrays vel, mag and scal and to the work
arrays dvel, dmag and dscal. The nonlinear terms have always the structure ∂k(ql1ql2). For instance,
the product uxuy appears in the right-hand-side of the evolution equations for both ux (∂yuxuy) and
uy (∂xuxuy). This is combined in the following lines:

prod = ur1*ur2

IF (MAGEQ) prod=prod-br1*br2

CALL fft3ds(prod,c1)

CALL rk nonlin add(c1,vel(:,:,:,1),dvel(:,:,:,1),al*dt,ga,2)

CALL rk nonlin add(c1,vel(:,:,:,2),dvel(:,:,:,2),al*dt,ga,1)

The first line simply computes the product of uxuy and stores it into the work array prod. The
second line subtracts the product bxby if MAGEQ is true. The third line transforms the product in
Fourier space. The fourth line uses the subroutine rk nonlin add to add the derivative of this
product with respect to y (this explains the last entry “2” of the subroutine call) to both vel(:,:,:,1)

and dvel(:,:,:,1) with the weights al*dt and ga respectively. The last line is similar but uses a
derivative with respect to x and updates vel(:,:,:,2) and dvel(:,:,:,2).

The only trick used in this subroutine is based on the incompressibility of the velocity field. Since,
both the velocity and the associated work array are imposed to be divergence free at the end of each
substep, adding a gradient to the nonlinear term does not modify the evolution:

∂juiuj − ∂iφ⇔ ∂juiuj (2.21)

The choice that is made in TURBO is φ = uyuy. Hence, the term uxux and uzuz are replaced by
uxux − uyuy and uzuz − uyuy while the term uyuy has not to be computed. This trick saves the
evaluation of one FFT. When MAGEQ is true, φ = uyuy − byby.
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2.8.7 RK NONLIN ADD

CALL rk nonlin add(c1,var,dvar,fac1,fac2,igrad)

This subroutine derives a nonlinear term that has already been Fourier transformed c1 with respect
to the space direction defined by igrad. It then adds the results to the variables var and to the work
arrays dvar with weights fac1=al*dt and fac2=ga respectively as described by the equation 2.16.
In practice, it does the following manipulations:

var → var + fac1 ∂xc1
dvar → dvar + fac2 ∂xc1

}
if igrad=1

var → var + fac1 ∂yc1
dvar → dvar + fac2 ∂yc1

}
if igrad=2 (2.22)

var → var + fac1 ∂zc1
dvar → dvar + fac2 ∂zc1

}
if igrad=3

Since c1 is expressed in Fourier space, the derivatives with respect to x, y or z are obtained by
multiplying by the arrays ikx, iky or ikz.
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2.8.8 RK EXPON

CALL rk expon(fac)

This subroutine is needed because the Runge-Kutta algorithms that are implemented in TURBO

are designed to produce the exact solutions in the absence of nonlinear terms. This is achieved by a
change of variables 1.61 in which the transport coefficients ν, η are κs enter exponential factors. For
instance, in each Runge-Kutta substep, both the magnetic field mag and the corresponding work array
dmag are multiplied by a factor exp(−ηk2facdt).

In the quasi-static approximation, the Lorentz force can be expressed in Fourier space as a linear
function of the velocity:

F Lorentz
i = −σ (Bext · k)2

ρk2
ui (2.23)

where ρ is the density, σ is the electric conductivity of the fluid and Bext is an external magnetic field.
The exponential factor are then modified and the function −νk2 is replaced by −νk2− (b0 · k)2/k2.
The vector b0 = σBext/ρ is provided through the namelist mag parameters.

Finally, in the presence of a solid body rotation, the components of the velocity field and of
the related work array have to be multiplied by the matrix D̃(ωτ) before being multiplied by the
exponential factors.

This subroutine is called in each Runge-Kutta substep in order to multiply the variables and work
arrays by the proper exponential factors and by the matrix D̃(ωτ) if needed.
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2.8.9 RK ENDSTEP

CALL rk endstep(be)

The first purpose of this subroutine is to add the term proportional to βi that appear in the relation
1.66 in each Runge-Kutta substep. However, because this addition has to be made at the end of the
substep, the subroutines is also used to take care of various constraints on the variables:

• It impose the k = 0 modes for the velocity field if veleq is true and for the magnetic field if
mageq is true.

• As a consequence of the discussion in 1.4, the subroutine also imposes that the modes corre-
sponding to nx/2, nyx/2 or nz/2 are set to zero.
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2.8.10 COMPUTE DT

CALL compute dt()

This subroutine is used to compute the time step. If fixed dt=1, then the time step is set to the
prescribed value dt dat. Both the parameters fixed dt and dt dat are provided to TURBO through
the namelist numerics parameters.

If fixed dt=0, the time step is computed automatically and is given by the following formula
(assuming that VELEQ is true):

dt =
cfl

π (max(|ux|)/dx+ max(|uy|)/dy + max(|uz|)/dz)
(2.24)

The coefficient cfl is also provided to TURBO through the namelist numerics parameters. This
is a special form of the Courant-Friedrichs-Lewy condition (CFL condition) that requests that the
timestep must be less than the time for the fluid to travel adjacent grid points. If MAGEQ is true, the
time step is the lowest value of this expression and a similar expression using the magnetic field.
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SECTION 2.9

THE SUBROUTINES AND FUNCTIONS IN FILES: XX EXTER.F90 & XX MOD.F90

These file contain the subroutines, functions and modules that can be modified by the user.

• external forcing: Computes the external force. It is called by the subroutine forcing when
FORCEPARA=3. Default is force=0.0

• external modif vel: Imposes a number of external constraints on the velocity field. It is
called by the subroutine modif vel when FORCEPARA=5. By default no constraint is imposed.

• external init vel: Computes the initial velocity field as defined by the user. It is called by
the subroutine init vel field when init vel=extern=3. Default is vel=0.0.

• external init mag: Computes the initial magnetic field defined by the user. It is called by the
subroutine init mag field when init mag=extern=3. Default is mag=0.0.

• external init scal: Computes an initial scalar field defined by the user. It is called by the
subroutine init sca field when init sca=2. Default is s=0.01*iscal. It is called inde-
pendently for each scalar field and the subroutines has two arguments: the scalar field itself and
its index iscal.

• external energy spectrum: It is a function of the wavevector k and of four parameters pa,
pb, pc and pd. The default implementation is the following function :

E(k) =
pa k4

(Ck Ns)2
exp

(
−2.0

(
k

pb

)2
)

(2.25)

• external stats init: Initiates the various files needed for computing the statistics.

• external stats end: Deallocates the memory used for the statistics.

• external stats write: Save the statistics on files.

• external stats compute: Computes the statistics and displays on screen a series of global
quantities. The default implementation only computes the kinetic (if VELEQ=.true.) energy
and the magnetic energy (if MAGEQ=.true.).

• module statmod: A module that is foreseen for declaring variable used in the various subrou-
tines dealing with the computation of statistics. It is declared in the file xx mod.F90.



CHAPTER 3

RUNNING TURBO

To be written in a future release of this documentation file.
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CHAPTER 4

POST PROCESSING TOOLS

To be written in a future release of this documentation file.
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CHAPTER 5

TEST-CASE SIMULATIONS

We present a series of test performed by the TURBO team. These test are included in the manual to
allow users to test the code on their machines and to test the new libraries implementations (notably
any new FFT releases). Also, these tests build confidence in the code capability to correctly solve
fully nonlinear turbulence.
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SECTION 5.1

RK3 TEST FOR KOLMOGOROV FLOW

The TURBO solver makes use of a third order Runge-Kutta method (RK3) for the time advancement.
We test the accuracy of the current implementation by comparing the numerical results obtained with
the exact solution for a analytically solvable problem. One such test problem is represented by a
nonconductive Kolmogorov flow in the laminar regime. Although numerically we solve the nonlinear
term, the laminar regime allows us to take as starting point for our analytical study the linearized
incompressible Navier-Stokes equation:

∂tui = ν∇2ui + Fi (5.1)

where we have suppressed the space and time dependency notations and the index i stands for the x,
y and z components of the fields. The Kolmogorov flow is generated by a stationary forcing which
varies sinusoidally in space (Fi). We assume the forcing to be aligned with the x axis and modulated
along the y axis. We denote the amplitude of the force by A.

Fx = A sin(kfy) (5.2)

Fy = Fz = 0 (5.3)

Since the TURBO code is a spectral solver we rewrite equation 5.1 in wave-number space:

∂tũi = −νk2ũi + F̃i (5.4)

In the laminar regime the forcing generates a unidirectional flow parallel to x axis. From equation 5.4
we see the asymptotic solution ( ∂tũi ≈ 0) for the laminar Kolmogorov flow is:

ũasymptoticx =
F̃x
νk2

(5.5)

At this step it is useful to determine the Kolmogorov force in wave-number space using TURBO

discrete space representation introduced in CHAPTER 1. In this notation 5.2 becomes:

F dx (~i) = A sin(~pf ·~i) (5.6)

where ~pf = (0, kf , 0). The discrete forward Fourier transform (for s = 1) gives us:

F̃ dx (~p) = Ck
∑
~i

F d(~i) exp[−i~p ·~i]

= Ck
∑
~i

A sin(~pf ·~i) exp[−i~p ·~i]

= Ck
∑
~i

A

2i

(
exp[i~pf ·~i]− exp[−i~pf ·~i]

)
exp[−i~p ·~i]

= − iA
2
Ck
∑
~i

(
exp[i(~pf − ~p) ·~i]− exp[i(−~pf − ~p) ·~i]

)
= − iA

2
Ck
∑
~i

(
Nδ~p,~pf

−Nδ~p,−~pf

)
(5.7)
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where δ~p,~pf
= 1 for ~p = ~pf .and zero otherwise. Since F̃ dx (~p)∗ = F̃ dx (−~p) we have F̃ dx (~pf ) =

− iA
2 NCk and zero for the other values of ~p. From the asymptotic solution given by 5.5 and the

Kolmogorov force just determined we find:

ũasymptoticx (0, kf , 0) =
F̃x(0, kf , 0)

νk2
f

= − iA

2νk2
f

NCk (5.8)

For a given set of parameters we will look at the difference between the analytical and the numerical
asymptotic solution (ũasymptoticx (0, kf , 0)) for a series of fixed time steps (dt). For the RK3 method
the errors per time step are of order dt4 and the total error is of order dt3. This implies that the
difference between the numerical and analytical asymptotic solutions should behave as the dt3. To
better see the difference we will compare the quantity U defined as:

U ≡ Im

[
ũasymptoticx (0, kf , 0)

NCk

]
= − A

2νk2
f

(5.9)

For the current FFT implementation TURBO sets Ck = 1. Since we are interested in a laminar solution
we use a small number of modes and high viscosity levels. The simulation box is (2π)3.and the set
of parameters chosen are:

N kf A ν

163 1 1 1

From the above parameters we find Uanalytic = −0.5. Using DOUBLE PRECISION simulations we
start from the same initial conditions and perform three runs for three different fixed time steps. The
U values found for the three runs and the difference from the analytical value are:

n dt U U − Uanalytic F
216

(
νk2
)3
dt3

1. 10−1 −0.499997693542029 2.30645797116846 · 10−6 2.31481481481482 · 10−6

2. 10−2 −0.499999997685974 2.31402585981755 · 10−9 2.31481481481481 · 10−9

3. 10−3 −0.499999999997732 2.26807461700673 · 10−12 2.31481481481481 · 10−12

The last column represent the error formula found by a Maple implementation of the RK3 scheme for
the linear equation compared to the analytical solution. In the table we present it as being proportional
to dt3 instead of dt4 to take into account the error accumulation in time. There is a good agreement
between the values found by the Maple program and the values obtained by our code. We also see
that by decreasing the time step by an order of 10 we decrease the error by an order of 1000. This test
proves the correct implementation of the RK3 time advancement method.
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